
MODELING NEGATIVE AUTOREGRESSION

IN CONTINUOUS TIME

MARK FISHER

Abstract. A continuous-time first-order autoregressive process cannot display
negative autoregression at any sampling horizon, but a first-order system of two
processes where only one is observed can produce a discretely sampled AR(1)
with negative first-order autocorrelation. A parsimonious example is derived.

1. Introduction

Discretely sampled data are sometimes found to fit an AR(1) model with negative
first-order autocorrelation. If the underlying data are continuous, then there must
by necessity be a richer underlying data-generating process. In this paper I assume
the underlying data-generating process is a Markovian system of two continuous-
time Ito processes. The observed process, consequently, is not Markovian by itself.
The analysis that follows is closely related to Bergstrom (1983),1 although he

does not treat the issue at hand. Bergstrom’s analysis is more general on a number
of counts. He treats higher order systems and as well as flow variables. He also
discusses estimation, a topic not addressed here. However, Bergstrom’s analysis is
less general on other counts. Bergstrom explicitly excludes the case studied here,
in which a second-order system produces a first-order result. (As Bergstrom notes,
his general approach applies to this case.) There is a more important way in which
his analysis is more restrictive. For second-order (and higher) stochastic differential
equations, he requires that the observable variable be differentiable (in the mean
square sense) with respect to time. This has the advantage in the issue at hand
of picking out a unique model as we will see below. However, if one treats the
observable and unobservable processes symmetrically in a system of Ito processes,
Bergstrom’s requirement seems arbitrary. Subject matter considerations may prove
useful on this count.
In Section 2, I present a continuous-time model that replicates negative first-order

autocorrelation. In Section 3, I demonstrate that the proposed model does what is
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1For good introductions to this material, see Bergstrom (1984) and Harvey (1989, chapter 9). The
derivation of discrete-time models from continuous-time models in the econometrics literature relies
on the notion of continuous-time white noise taken from the engineering literature. The connection
between this approach and that of Ito processes can be found in Arnold (1974) and Øksendal
(1995).
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claimed. In Section 4, I derive the ARMA representation for the observed process
and its spectrum.

2. First-order autoregression

Consider a continuous process y that is sampled once every unit of time.2 We take
as given the unconditional mean µ and the unconditional autocovariance function,
γ(j) for j = 0, 1, 2, . . ., where γ(0) is the unconditional variance. The autocorrela-
tion function is given by ρ(j) = γ(j)/γ(0). We assume that the discretely-sampled
process is a stationary AR(1), in which case, the autocorrelation function is com-
pletely determined by ρ(1): ρ(j) = ρ(1)j for j = 2, 3, 4, . . .. We can write the
dynamics of the observed time series as

y(t+ h) = µ+ ρ(h) (y(t)− µ) + ν(t, h), (2.1)

for h = 1. The “error term” ν(t, 1) is normally distributed with mean zero and
constant variance

σ2ν(h) = (1− ρ(h)2) γ(0), (2.2)

for h = 1. In addition, ν(t, 1) is serially uncorrelated and uncorrelated with y(t). If
the autocorrelation coefficient is positive, ρ(1) > 0, then we can extend (2.1) and
(2.2) to all h > 0 by letting ρ(h) = e−κh, where κ > 0. The expectation of y(t+ h)
conditional on y(t) is

E[y(t+ h) | y(t)] = µ+ ρ(h)
¡
y(t)− µ¢. (2.3)

The extension is a parsimonious way to provide forecasts for non-integer horizons
that are consistent with those for integral horizons.
Let p(x, h, z, t) be the probability density of y(t + h) = x given y(t) = z. The

conditional density implied by (2.1)—(2.3) is

p(x, h, z, t) = N
³
x, µ+ ρ(h)

¡
z − µ¢, (1− ρ(h)2) γ(0)´, (2.4)

where

N (x,m, v) = (2π v)−1/2 e− (x−m)2
2 v

is the normal density with mean m and variance v. The transition density for a
Markovian variable satisfies the Chapman—Kolmogorov equation:

p(x, h1 + h2, y, t) =

Z ∞
−∞

p(x, h2, z, t+ h1) p(z, h1, y, t) dz,

for all h1, h2 > 0. (2.5)

The probability density given by (2.4) satisfies (2.5) for ρ(h) = e−κh. Therefore,
y follows and AR(1) for any h > 0. In particular, let y be an Ito process with
dynamics given by

dy(t) = κ (µ− y(t)) dt+
p
2 γ(0)κ dW (t), (2.6)

2Assume y is a “stock” variable. There is some discussion of “flow” variables in Appendix C.
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where W is a Wiener process. This process satisfies the conditional probability
density above.3

In order to accommodate negative first-order autocorrelation, define

q(h) = e−κh
µ
cos(π h) +

ψ sin(π h)

π

¶
, (2.7)

and where ψ is a free parameter.4 Now suppose (2.1)—(2.3) hold, where the auto-
correlation function is given by ρ(h) = q(h). See Figures 1 and 2 for a plots of q(h)
and 1− q(h)2 for ψ = −κ, 0, κ. Note the following three properties of q(h). First,
q(1) = −e−κ < 0. Second, q(h) = 0 for h = δ, 1 + δ, 2 + δ, . . ., where

δ =
1

π
arccos

Ã
−ψp
π2 + ψ2

!
. (2.8)

For example, for ψ = 0, δ = 1/2. Third, dq(h)/dh|h=0 = ψ − κ.

0.5 1 1.5 2

-0.4

-0.2

0.2

0.4

0.6

0.8

1

Figure 1. Autocorrelation function q(h). The solid curve shows
ψ = −κ, the dashed curve shows ψ = 0, and the dotted curve shows
ψ = κ.

The autocorrelation function q(h) satisfies all of the conditions for an AR(1) for
h = 1. However, (2.5) is not satisfied except for integral hj , which implies ν(t, h) is
serially correlated for non-integral h. Consequently, y is not an AR(1) at any other
sampling frequency. Moreover, the failure to satisfy (2.5) demonstrates that this
conditional probability cannot be generated by a single Markovian state variable.
By allowing the continuous-time dynamics for y to depend on an unobserved

state variable, a model that generates this conditional probability can be found. In

3See, for example, Harvey (1989, pp. 480—482).
4As we will see below, ψ is restricted to the interval [−κ,κ].
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Figure 2. Variance of ν(t, h) is proportional to 1− q(h)2; see (2.2).
The solid curve shows ψ = −κ, the dashed curve shows ψ = 0, and
the dotted curve shows ψ = κ.

particular, let z be the unobserved variable and let the joint dynamics of y and z
be given by

dy(t) =
©
(κ− ψ) (µ− y(t)) + ξ z(t)

ª
dt+

p
2 γ(0) (κ− ψ) dW1(t) (2.9a)

dz(t) =

½µ
π2 + ψ2

ξ

¶
(µ− y(t))− (κ+ ψ) z(t)

¾
dt+s

2 γ(0) (κ+ ψ) (π2 + ψ2)

ξ2
dW2(t),

(2.9b)

where W1 and W2 are independent Wiener processes and ξ 6= 0 is a nuisance pa-
rameter. As we will see, ξ has no observable implications for y (or the coherence
between y and z). In the next section I show that (2.9) produces the probability
density (2.4) where ρ(h) = q(h).
The only free parameter with observable implications is ψ. We briefly consider

three cases. First, for ψ = κ, the diffusion term for y vanishes, in which case y has
finite variation and is (equivalently) mean-square differentiable. This is the case
that fits into Bergstrom’s framework (with ξ = 1). Second, the greatest symmetry
between the dynamics of y and z is produced with ψ = 0 (and ξ = π). This is
the specification Harvey (1989) chooses to model the cyclic component. Third, for
ψ = −κ, the diffusion term for z vanishes, in which case z has finite variation. As
I show in Section 4, the coherence between y and z is identical for ψ = ±κ.
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3. The continuous-time Markovian structure

In this section, we build solution (2.9) from scratch. Consider a system of two
Ito processes that is linear and Gaussian. In particular, let

dX(t) =
¡
a+ bX(t)

¢
dt+ Σ dW (t), (3.1)

where

X(t) =

µ
y(t)
z(t)

¶
and W (t) =

µ
W1(t)
W2(t)

¶
,

and where

a =

µ
a1
a2

¶
, b =

µ
b11 b12
b21 b22

¶
, and Σ =

µ
σ11 σ12
σ21 σ22

¶
.

Assume b is invertible and let m = −b−1a. Given this setup, the distribution of
X(t+ h) conditional on X(t) is Gaussian, and as such it is completely determined
by its conditional mean and conditional variance.
In discrete time, this model produces a vector autoregression process for any time

step h:5

X(t+ h) = α(h) + β(h)X(t) + ε(t, h), (3.2)

where
α(h) =

¡
I − β(h)¢m and β(h) = eb h,

and the error term ε(t, h) is normally distributed with mean zero and variance-
covariance matrix

V (h) =

Z h

v=0
β(h− v)ΣΣ>β(h− v)> dv.

The error term is serially uncorrelated.6 The stationarity ofX implies limh→∞ β(h) =
0, limh→∞ α(h) = m, and V (∞) = limh→∞ V (h). Note that V (∞) is the uncon-
ditional variance-covariance matrix of X, and therefore one condition that must be
satisfied is V11(∞) = γ(0).
By choosing aj = −µ b1j we force m1 = µ and m2 = 0, which allows us to write

the first line of (3.2) as

y(t+ 1) = µ+ β11(h) (y(t)− µ) + ν(t, h), (3.3)

where
ν(t, h) = ε1(t, h) + β12(h) z(t). (3.4)

By construction, ν(t, h) has mean zero. If in addition z(t) is unconditionally uncor-
related with y(t) (i.e., if V12(∞) = 0), then7

E[y(t+ h) | y(t)] = µ+ β11(h) (y(t)− µ). (3.5)

Nevertheless, the presence of z(t) makes ν(t, h) serially correlated. If β12(1) = 0
and β11(1) < 0, then y will follow a univariate AR(1) with negative first-order
autocorrelation for h = 1.

5This solution is presented in Harvey (1989) and is developed step-by-step in Appendix A.
6See Appendix A.
7This assumption has no observable implications. See Appendix B.
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In order to satisfy the requirements we have laid out in the previous paragraph, we
need a stable, oscillatory system. To this end, let us reparameterize the coefficients
in b as follows:

b11 = ψ − κ, b12 = ξ, b21 = −
µ
π2 + ψ2

ξ

¶
, and b22 = − (κ+ ψ) , (3.6)

where κ > 0 and ξ 6= 0. With this parameterization, the eigenvalues of b are −κ±π i,
where i =

√−1, and

β(h) = e−κh
Ã
cos(π h) I +

sin(π h)

π

Ã
ψ ξ

−
³
π2+ψ2

ξ

´
−ψ

!!
, (3.7)

where I is the 2× 2 identity matrix. Note that β(1) = −e−κ I, so that β11(1) < 0
and β12(1) = 0 as desired.8 In particular, β11(h) = q(h) as given in (2.7). The
conditions V11(∞) = γ(0) and V12(∞) = 0 can be reduced to σ12 = σ21 = 0,

σ11 =
p
2 γ(0) (κ− ψ) and σ22 =

s
2 γ(0) (κ+ ψ) (π2 + ψ2)

ξ2
.

The requirement that σ11 and σ22 be real restricts the range of ψ to −κ ≤ ψ ≤ κ.
With this parameterization we have

V11(h) = γ(0)

µ
1− π2 + ψ2 (1− cos(2hπ)) + π ψ sin(2hπ)

e2hκ π2

¶
V12(h) =

2 γ(0)ψ
¡
π2 + ψ2

¢
sin(hπ)2

ξ e2hκ π2

V22(h) =
π2 + ψ2

ξ2

µ
V11(h) +

2 γ(0)ψ sin(2hπ)

e2hκ π

¶
.

Given this parameterization, the variance of ν(t, h) is

V11(h) + β12(h)
2 V22(∞) =

¡
1− q(h)2¢ γ(0). (3.8)

Equation (3.8) confirms that (3.3) has all the properties set out in Section 2. Fi-
nally, note that ξ does not appear in either the conditional expectation (3.5) or the
conditional variance (3.8).

4. ARMA representation

We have demonstrated that (2.9) produces the desired observable properties for
y. In particular, the conditional expectation E[y(t+h) | y(t)] is given by (2.3) where
ρ(h) = q(h) as given by (2.7). However, the error term ν(t, h) in (2.1) is serially
correlated in general so that lagged values of y may be used to improve forecasts.
In this section, I complete the analysis by deriving the discrete-time ARMA process
for y. We will see that for small h, the ARMA process for y for ψ = κ is quite

8More generally one can let b21 = −
¡
λ2 + ψ2

¢
/ξ, where λ > 0, in which case the eigenvalues of b

are −κ± λ i and β(λ/π) = −e−κλ/π I. Setting ψ = 0 and ξ = λ, limλ→∞ β(h) = e−κh I, showing
the positive AR model is the limit of the negative AR model as the frequency of the cycles goes to
infinity. See Harvey (1989, pp. 487—488) on this point as well.
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different than for ψ < κ and yet the coherence between y and z is identical for
ψ = ±κ.
We can write (3.2) as

Φ(Lh)X(t+ h) = α(h) + ε(t, h), (4.1)

where
Φ(Lh) = I − β(h)Lh and Ljh x(s) = x(s− j h).

We now derive the univariate representation for y in the time domain. Let Φ†(Lh)
denote the adjoint matrix of Φ(Lh) and |Φ(Lh)| denote the determinant of Φ(Lh):

Φ†(Lh) = I −
µ

β22(h) −β12(h)
−β21(h) β11(h)

¶
Lh

and
|Φ(Lh)| = 1− ϕ1(h)Lh − ϕ2(h)L2h,

where ϕ1(h) = 2 e
−κh cos(π h) and ϕ2(h) = −e−2κh. See Figure 3.
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Figure 3. Autocorrelation coefficients: ϕ1(h) is the thick solid line
and ϕ2(h) is the thin solid line.

We can write the discretely-sampled system as

|Φ(Lh)|X(t+ h) = α̂(h) + Φ†(Lh) ε(t, h), (4.2)

where α̂(h) = Φ†(1)α(h). For y we have

|Φ(Lh)| y(t+ h) = α̂1(h) + (1− β22(h)Lh) ε1(t, h) + β12(h)Lh ε2(t, h), (4.3)

which is an ARMA(2,1). Note that |Φ(Lh)| depends only on κ and so is completely
determined by ρ(1). The free parameter affects the process solely through the MA
component. Regarding the MA component, there are two special cases of note.
First, β12(h) = 0 for integer h, and the resulting MA polynomial has a common
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factor in the AR polynomial, reducing the dynamics to the AR(1) case.9 Second,
β22(h) = 0 for h = δ, 1+ δ, 2+ δ, . . ., where δ is given in (2.8), so that the remaining
error is serially uncorrelated, producing a pure AR(2).
We can compute the MA coefficient as follows. Referring to (4.3), define

ζ(t, h) := |Φ(Lh)| y(t+ h)− α̂(h)
= ε1(t, h)− β22(h) ε1(t− h, h) + β12(h) ε2(t− h, h).

The variance and first-order covariance of ζ(t, h) are

γhζ (0) =
¡
1 + β22(h)

2
¢
V11(h) + β12(h)

2 V22(h)− 2β12(h)β22(h)V12(h)

= γ(0)

µ
1− e−4hκ − 2ψ e

−2hκ sin(2hπ)
π

¶
γhζ (1) = −β22(h)V11(h) + β12(h)V12(h)

=
2 γ(0) e−2hκ

¡
ψ cosh(hκ) sin(hπ)− π cos(hπ) sinh(hκ)¢

π
.

Figures 4 and 5 plot γhζ (0) and γ
h
ζ (1) versus h for the three values of ψ. For small

h, the behavior of both γhζ (0) and γ
h
ζ (1) for ψ = κ is quite different than for ψ < κ:

γhζ (0) =

(
4 (κ− ψ) γ(0)h+O(h2) ψ < κ
8
3 κ (π

2 + κ2) γ(0)h3 +O(h4) ψ = κ

and

γhζ (1) =

(
−2 (κ− ψ) γ(0)h+O(h2) ψ < κ
2
3 κ (π

2 + κ2) γ(0)h3 +O(h4) ψ = κ.

We can write ζ(t, h) in MA form:

ζ(t, h) = (1 + θ(h)Lh) η(t, h),

where η(t, h) is normally distributed with mean zero and variance σ2η(h). Out goal

is to find expressions for θ(h) and σ2η(h). We can solve

γhζ (0) =
¡
1 + θ(h)2

¢
σ2η(h) and γhζ (1) = θ(h)σ2η(h)

for θ(h) and σ2η(h). In Figures 6 and 7, θ(h) and σ2η(h) are plotted versus h for

ψ = −κ, 0,κ. For small h, the behavior of θ(h) and σ2η(h) for ψ = κ is quite
different than for ψ < κ as well:

θ(h) =

(
−1 +O(h1/2) ψ < κ

2−√3 +O(h) ψ = κ

and

σ2η(h) =

(
2 (κ− ψ)h+O(h3/2) ψ < κ
2
3 (2 +

√
3)κ (π2 + κ2)h3 +O(h4) ψ = κ.

9See (3.7) for the parameterization of β(h).



MODELING NEGATIVE AUTOREGRESSION IN CONTINUOUS TIME 9

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Figure 4. γhζ (0) is plotted for three values of ψ (for κ = γ(0) = 1).
The solid curve shows ψ = −κ, the dashed curve shows ψ = 0, and
the dotted curve shows ψ = κ.
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Figure 5. γhζ (1) is plotted for three values of ψ (for κ = γ(0) = 1).
The solid curve shows ψ = −κ, the dashed curve shows ψ = 0, and
the dotted curve shows ψ = κ.

The spectrum. The spectrum provides a concise way to summarize the time-series
properties of y and its relation to the omitted variable z for various values of the
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Figure 6. θ(h) is plotted for three values of ψ (for κ = γ(0) = 1).
The solid curve shows ψ = −κ, the dashed curve shows ψ = 0, and
the dotted curve shows ψ = κ.
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Figure 7. σ2η(h) is plotted for three values of ψ (for κ = γ(0) = 1).
The solid curve shows ψ = −κ, the dashed curve shows ψ = 0, and
the dotted curve shows ψ = κ.

sampling frequency h.10 The spectrum of finitely-sampled X is given by11

fX(ω)(h) = Φ
¡
e−iω

¢−1
V (h)

³
Φ
¡
eiω
¢−1´>

=

µ
fy(ω)(h) fyz(ω)(h)
fzy(ω)(h) fz(ω)(h)

¶
. (4.4)

10The spectrum of X itself, which does not depend on the sampling horizon, is less informative.
11See Hamilton (1994).
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Here is 2 fy(ω)(h)/γ(0):
12

2 cos(ω)
¡
ψ cosh(hκ) sin(hπ)− π cos(hπ) sinh(hκ)¢− ψ sin(2hπ) + π sinh(2hκ)

2π2
³
(cos(hπ)− cos(ω) cosh(hκ))2 + sin(ω)2 sinh(hκ)2

´ .

For h = 1,13

2 fy(ω)(1)

γ(0)
=

sinh(κ)

π (cosh(κ) + cos(ω))
.

Figure 8 shows the normalized spectrum of y for ψ = 0. For comparison, the
normalized spectrum for the three values of ψ is plotted in Figure 9 for h = 1/4.
For all appropriate values of the parameters, limκ→∞ 2π fy(ω)(h)/γ(0) = 1, which
shows that y converges to white noise as κ increases without bound.
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Figure 8. The normalized spectrum of y, 2 fy(ω)(h)/γ(0), for ψ = 0.

Here is the cross-spectrum fyz(ω)(h)/γ(0):

−i ¡π2 + ψ2
¢
sin(hπ) sin(ω) sinh(hκ)

ξ π2 (1 + cos(2hπ) + cos(2ω)− 4 cos(hπ) cos(ω) cosh(hκ) + cosh(2hκ)) .
12Note that γ(0) = 2

R π
0
fy(ω)(h) dω for h > 0.

13For comparison, the normalized spectrum when y is positively autocorrelated is

2 fy(ω)(h)

γ(0)
=

sinh(κh)

π (cosh(κh)− cos(ω)) .
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Figure 9. The normalized spectrum of y, 2 fy(ω)(1/4)/γ(0). The
solid curve shows ψ = −κ, the dashed curve shows ψ = 0, and the
dotted curve shows ψ = κ.

Note that 2fyz(ω)(1) = 0. The coherence is given by

cyz(ω)(h) =
|fyz(ω)(h)|2

fy(ω)(h) fz(ω)(h)
.

The general expression for the coherence is somewhat complicated. Note the fol-
lowing properties of the coherence. It is independent of ξ, and it is zero for integer
h. As a function of ψ, it is symmetric around ψ = 0 where it reaches its minimum.
For ψ = 0,

cyz(ω)(h) =

µ
sin(hπ) sin(ω)

cosh(hκ)− cos(hπ) cos(ω)
¶2
.

Figure 10 shows the coherence for ψ = 0. For comparison, the coherence for the
three values of ψ is plotted in Figure 11 for h = 1/4.

Appendix A. Derivation of discrete-time vector AR process

By construction,

X(t+ h) = X(t) +

Z h

s=0
dX(t+ s). (A.1)
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Figure 10. The coherence of y and z, cyz(ω)(h), for ψ = 0.
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Figure 11. The coherence of y and z, cyz(ω)(1/4). The solid curve
shows ψ = ±κ and the dashed curve shows ψ = 0.
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Let X(t, h) = E[X(t+ h) | X(t)]. Taking conditional expectations of both sides of
(A.1) produces

X(t, h) = X(t) +E

∙Z h

s=0
dX(t+ s) | X(t)

¸
= X(t) +

Z h

s=0
E [dX(t+ s) | X(t)]

= X(t) +

Z h

s=0
E
£¡
a+ bX(s)

¢
ds | X(t)¤

= X(t) +

Z h

s=0

¡
a+ bX(t, s)

¢
ds.

Thus X(t, h) satisfies a system of first-order ODEs with constant coefficients:

d

dh
X(t, h) = a+ bX(t, h) subject to X(t, 0) = X(t).

The solution is

X(t, h) = α(h) + β(h)X(t),

where

α(h) =
¡
I − β(h)¢m and β(h) = eb h.

Now consider the process for the conditional expectation of X(T ) for some fixed
T ≥ t. In other words, apply Ito’s lemma to X(t, T − t) = α(T − t)+β(T − t)X(t):

dX(t, T − t) = µ(t, T − t) dt+Σ(t, T − t) dW (t),
where Σ(t, h) = β(h)Σ and

µ(t, h) = β(h)
¡
a+ bX(t)

¢− ¡α0(h) + β0(h)X(t)
¢

=
©
β(h) a− α0(h)ª+ ©β(h) b− β0(h)ªX(t)

= 0.

Let T = t+ h. Then we can define the “error” term:

ε(t, h) = X(t+ h)−X(t, h)

=

Z h

v=0
dX(t+ v, h− v)

=

Z h

v=0

¡
β(h− v)Σ¢ dW (t+ v).

(A.2)

The error term is normally distributed with mean zero and variance-covariance
matrix

V (h) =

Z h

v=0
β(h− v)ΣΣ>β(h− v)> dv.

Note that since there is no overlap,

Cov[ε(t, h), ε(t+ j h, h)] = 0 for j = 1, 2, 3, . . ..

In other words, ε(t, h) is serially uncorrelated.
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Appendix B. Unconditional correlation

In this section I show that the assumption that y and z are unconditionally
uncorrelated is not restrictive in the sense that (2.3) holds where ρ(h) is given by
(2.7) even when y and z are unconditionally correlated. To allow for a more general
correlation structure, let

Σ =

µ
σ11 0
σ21 σ22

¶
.

With β(h) given by (3.7), we have

V12(∞) = 2 (κ− ψ)V11(∞) + σ211
2 ξ

.

We can decompose z into two orthogonal parts as follows. Let z(t) = c0 + c1 y(t) +
u(t), where c0 = m2 − c1m1, c1 = V12(∞)/V11(∞) and u(t) and y(t) are uncondi-
tionally uncorrelated. The variance of u(t) is

V22(∞)− c21 V11(∞) =
det(V (∞))
V11(∞) .

We can write

Y (t+ h) =
¡
α1(h) + β11(h) c0

¢
+
¡
β11(h) + c1 β12(h)

¢
Y (t) + ν(t, h)

= α̃11(h) + β̃11(h) y(t) + ν(t, h),
(B.1)

where ν(t, h) = ε1(t, h) + β12(h)u(t) is mean zero with variance

V11(h) + β12(h)
2 det(V (∞))
V11(∞) .

The autocorrelation function is

β̃11(h) = e
−κh

Ã
cos(π h) +

ψ̃ sin(π h)

π

!
,

where

ψ̃ = κ− σ211
2 γ(0)

.

Clearly, ψ̃ ≤ κ. One can show that σ222 ≥ 0 implies ψ̃ ≥ −κ.

Appendix C. Flow variables

We now consider the discrete-time process for “flow” variables, where

Sh(t) =

Z t

s=t−h
X(s) ds.
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We can write

Sh(t+ h) =

Z t+h

s=t
X(s) ds

=

Z t+h

s=t

³
α(h) + β(h)X(s− h) + ε(s− h, h)

´
ds

= α(h)h+ β(h)Sh(t) + u(t− h, t+ h),
where (see Appendix A)

u(t−h, t+h) =
Z t+h

s=t
ε(s−h, h) ds =

Z t+h

s=t

Z h

v=0

¡
β(h−v)Σ¢ dW (s−h+v). (C.1)

The index on the Brownian in (C.1) runs from t−h to t+h, so that u(t−h, t+h) is
correlated with u(t, t+ 2h). Thus Sh follows an ARMA(1,1).

14 Nevertheless, with
the specialized parameterization, the forecast of S1h(t+ h) conditional on S1h(t) is

E[S1h(t+ h) | S1h(t)] = µh+ q(h) (S1h(t)− µh) ,
where q(h) is given by (2.7).
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14Reversing the order of integration,

u(t− h, t+ h) =
Z h

v=0

¡
β(h− v)Σ¢µZ t+h

s=t

dW (s− h+ v)
¶
dv

=

Z h

v=0

¡
β(h− v)Σ¢w(v, h) dv,

where w(v, h) = W (t + v) −W (t + v − h) is normally distributed with mean zero and variance—
covariance matrix

E
h
w(v, h)w(v + u, h)>

i
= (h− u) I for 0 ≤ u ≤ h− v.


