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ABSTRACT. We review the absence-of-arbitrage restrictions in a Brownian mo-
tion setting, relying on the existence of a state—price deflator. We show how to
find useful representations by either changing the numeraire or by changing the
deflator—asset and its associated equivalent martingale measure. We examine the
relation between utility and the state—price deflator, and the absence-of-arbitrage
condition for a perpetuity is applied to finding () the optimal relationship be-
tween consumption and wealth and (77) the nominal interest rate.

1. INTRODUCTION

Absence-of-arbitrage restrictions determine asset prices by assuming “you can’t
get something for nothing.” An arbitrage is a trading strategy that (i) requires
no inflows from the trader yet (ii) produces outflows for the trader with positive
probability. The central proposition of arbitrage-free asset pricing is this: If it is
possible to choose the units in which trading gains are measured in such a way as
to make all gains unpredictable (i.e., make them martingales), then there are no
arbitrage opportunities. When asset values are measured in these units, they are
referred to as deflated asset values, and the deflator that does the trick is known as
the state—price deflator.

The rate of change of the state—price deflator can be decomposed into two parts—
expected and unexpected—each of which has a particularly useful interpretation.
The expected rate of change is (the negative of ) the short-term risk-free interest rate.
The unexpected rate of change is (the negative of) the price of risk: It determines
the covariance between the rate of change of the state—price deflator and the rate
of return on an asset. This covariance is (the negative of) the risk premium for
the asset. From a modeling perspective, this decomposition is convenient because it
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allows one to model the interest rate and the price of risk directly and independently
(subject only to the existence of the state—price deflator itself).

Once we have identified the state—price deflator in terms of US dollars, say, it is
straightforward to find the state—price deflator for gains measured in French francs
by using the foreign exchange rate to revalue assets, their dividends, and (the inverse
of) the state—price deflator itself. The expected rate of change of the new state—price
deflator is (the negative of) the interest rate measured in francs and the unexpected
rate of change is (the negative of) the price of risk measured in francs. The same
technique can be used to change from real values to nominal values (and vice-versa)
using the price level. More generally, one can define a new numeraire in terms of
any positive process, for example the value of a strictly positive asset. In such a
case, it turns out that the value of this asset deflated by the original state—price
deflator is the new state—price deflator. As such, its expected rate of change is (the
negative of) the interest rate and its unexpected rate of change is (the negative of)
the price of risk, both measured in terms of the new numeraire.

In general equilibrium, asset prices are determined by “marginal cost equals mar-
ginal benefit,” where the marginal cost is the marginal utility of consumption fore-
gone by the purchase of the asset, and the marginal benefit is the conditional ex-
pectation of the marginal utility (in present value terms) to be obtained from the
sale of the asset (and from any dividends the asset may pay). In other words, asset
values deflated by (the present value) of marginal utility are martingales. Appar-
ently, then, in general equilibrium the marginal utility of consumption adjusted for
discounting (the utility gradient) is the state—price deflator.

A general-equilibrium valuation formula for asset prices can be obtained directly
from the utility function and the dynamics of equilibrium consumption without
reference to the optimal relationship between consumption and wealth. The optimal
relation between consumption and wealth can be uncovered by treating wealth as
an asset and applying the valuation equation. This approach differs from that of
Cox, Ingersoll, Jr., and Ross (1985a), in which the optimal relationship between
consumption and wealth is determined first, and then their valuation formula is
written in terms of that optimal relationship.

Duffie and Skiadas (1994) demonstrate that “the first-order conditions for opti-
mality of an agent maximizing a ‘smooth’ utility can be formulated as the martingale
property of prices, after normalization by a ‘state—price’ process.” Moreover, they
show how to compute the state—price deflator for “a wide class of dynamics utili-
ties.” Using these results and the absence-of-arbitrage representations, we show how
to solve infinitely-lived representative agent models of general equilibrium without
solving differential equations. The central insight is that given the price process for
an asset, the absence of arbitrage determines the dividend process. Turning this
around, one can model the (state—price) deflated asset value, where the expected
return is (minus) the dividend rate, and the absence of arbitrage determines the
capital gain process.

In general equilibrium, the capital stock and currency are the two central assets.
With homothetic preferences and linear technology, there is sufficient homogene-
ity in these models so that for the most part one need model only the dynamics
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of the economy. However, the equilibrium dynamics depend on the level of the
consumption—capital ratio and the nominal interest rate, which are the dividends of
the capital stock and currency, respectively. If one directly models these dividends,
then their dynamics follow. Otherwise these dividends and their dynamics are the
solutions to differential equations.

Section 2 presents two main techniques for finding useful representations for asset
prices in an arbitrage-free framework: (7) changing the numeraire and (ii) changing
the deflator—asset and its associated martingale measure. It turns out the the first
technique is more the important of the two for solving general equilibrium models.
Section 3 examines the relationship between utility and the state—price deflator, and
the perpetuity equation that is developed in Section 2 is applied to finding (7) the
optimal relationship between consumption and wealth and (4i) the nominal interest
rate.

2. ABSENCE OF ARBITRAGE

The stochastic setting that we adopt is characterized by a vector of d independent
Brownian motions, W.! In this setting, a deflator is a positive Ito process whose
dynamics can be written

de—(g) — uy (£) dt + oy () TAW (1), (2.1)

where “T” denotes the transpose. In general, the drift and diffusion of this and
other Ito processes may be Ito processes themselves. Let the value of an asset V
(which need not be positive) be an Ito process:

dV (t) = fiy (t) dt + Gy () dW (t). (2.2)
Let the cumulative dividend of the asset D also be an Ito process:

dD(t) = fip(t) dt + Gp(t) " dW (t). (2.3)
If V' is a positive asset, we may write

dv(t)

V) py (t) dt + oy (t) T dW (t)
dVD—(it)) =6(t)dt + op(t) dW ().
where
()= B0 oy = Dy B0 g .= 220,

V@)’ V@)’

Define the gain to be the sum of the asset’s value and its cumulative dividend:
G :=V 4 D. For a given deflator Y, the dynamics of the deflated gain are given by

dGY (t) = dV'Y (t) + dDY (t),

1See Duffie (1996, Chapter 6) for omitted details.
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where the deflated value of the asset is defined by

VY (t) =Y () V(t) (2.4a)

and the deflated cumulative dividend is defined by
DY (0) := Y (0) D(0) (2.4b)

dDY (t) :== Y (t)dD(t) + Y (t) oy (t) "ap(t) dt
—Y(t) {ﬂD(t) + ay(t)Tc‘fD(t)} dt + Y (t)5p(t)TdIW (¢) (2.4c)

= ph(t)dt + o5 () dW (t).

The apparent asymmetry in the definitions of V¥ and DY is required to produce
the necessary symmetry in the absence-of-arbitrage condition.

A trading strategy 0 is a vector-valued Ito process that represents the positions
(long or short) in each security. The total gain represented by 6 is [0(s)"dG(s),
where G =V + D is understood to be a vector of gains here. A trading strategy is
self-financing if

T
0TV (T) = 0()TV(t) + / 0(s)TdG(s).

s=t
A self-financing strategy is an arbitrage with respect to G if for some t and T
0(t)'V(t)<0 and O(T)'V(T)>0
or
0(t)'V(t) <0 and O(T)"V(T)>O0.

By the numeraire invariance theorem, a trading strategy is an arbitrage with respect
to G if and only if it is an arbitrage with respect to GY for any deflator Y. Therefore,
if there is a deflator for which GY is a martingale, then there is no arbitrage, since
in that case

E[0(T)"VY(T)] = 0(t) V¥ (t)

for all self-financing trading strategies. Such a deflator is called a state—price defla-
tor.

We assume the existence of a state—price deflator, denoted n. The dynamics of
the state—price deflator can be written

dn(t) T
= t)dt + on(t) dW(t
= —r(t)dt — \(t) " dW (),
where 7(t) is the interest rate and A(t) is the price of risk. We are free to model r
and ) independently as long as there is a solution to (2.5).2:3 Associated with any

2If we model r and \ as functions of a vector of Markovian state variables, X, n will not in general
be a Markovian function of X. In this sense, it is less general to model n directly than to model
r and X. In particular, if one models n as a function of stationary Markovian state variable, the
very-long discount bond will be the deflator asset. See Kazemi (1992).

3See Appendix A for a discussion of CIR’s critique of the arbitrage approach to asset pricing.
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state—price deflator is a deflator-asset: v := 1/n. By Ito’s lemma, the dynamics of
the deflator—asset are

dv(t)
v(t)

Consider the state—price-deflated gain for a single security: G = V™ 4+ D". In
this case, the dynamics of the deflated gain are given by

dG"(t) = dV"™(t) + dD™(¢)
= d(n(t) V(t)) +n(t) dD(t) — n(t) \(t)Top(t) dt
= fign (t) dt + Gn (t) T dW (2),

= {r(t) + |A@®)|*} dt + A(t) TdW (). (2.6)

where

fin (t) = n() { v (£) + fin(t) = 1)) V(H) = A®) T (v (t) + op (1) }
agn(t) = n(t){ov(t) +ap(t) = V() A1)} -
The absence-of-arbitrage condition states that the deflated gain is a martingale:
G"(t) = E[G"(7)], (2.7)
for all 7 > t. We can write (2.7) as a valuation formula:

Ei[n(r) V(r) + D"(7) — D"(t)]
n(t)

n(r) T nfs) (. -
i 20D (1(5) ~ Ao Tor0(e)) .
EF Ve [ (ke A ()
In (2.8) we see that it is the risk-adjusted value of the expected dividends that
contributes to the value of the asset. The absence-of-arbitrage condition can also

be expressed directly in terms of the drift of the deflated gain: fign(t) = 0, or

(v =20 ov )} + {mp® - Aot} =r)VE), (29

where the risk-adjusted capital gain plus the risk-adjusted dividend equals the risk-
free earnings on the value of the asset. When we introduce state variables, (2.9)
becomes a partial differential equation (PDE).
If V' is a positive asset and the cumulative dividend is predictable, then we have
dD(t)

T =

V(t) =
(2.8)

where ¢ is the dividend rate. In this case we can write the deflated return process
as

dGn(t)  dv(e)
n(t)V(t) V()
= pgn () dt + o (1) dW (1),

+6(t) dt
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where
pign(t) = py (t) +6(t) — r(t) — A(t) Tov (t)
oan(t) = ov(t) — A1),

and the absence-of-arbitrage condition pgn(t) = 0 becomes

v (8) + 3(t) = () + M®) Tov (8). (2.10)

4

An aside on the absence-of-arbitrage in a Markovian setting. Let us ex-
amine how the absence-of-arbitrage condition (2.9) or (2.10) can be put to use in
a Markovian setting. We suppose there is a vector of Markovian state variables X.
The dynamics of X are given by

dX (t) = px (X (1) dt + ox (X (t))"dW (1), (2.11)

where px(x) and ox(z) are given vector and matrix functions of z. Also suppose
that r(t) = R(X(5)), M) = LX(0)), fin(t) = Mp(X(t)), and op(t) = Sp(X(2)),
where R(z) and Mp(z) are given scalar functions of x and L(x) and Sp(z) are
given vector functions of x. Finally suppose that V' (t) = V(X (t),t), where V(z,1) is
an unknown scalar function z and ¢. Then Ito’s lemma applied to V(X (¢),t) gives
ay(t) = My (X(t),t) and oy (t) = Sy (X (¢),t) where

My (z,t) = px(z) Vy(z, t) + % tr [Vm(@ ) UX(ac)ToX(:U)} CVy(x,t), (2.12a)
Sv(z,t) = ox(x) Vy(z, 1), (2.12b)

and where Vi(z,t), V,(z,t), and V,,(z,t) are the obvious partial derivatives of
V(z,t) and tr[a] is the trace of matrix a. Substituting these expressions into (2.9)
produces a PDE which (along with an appropriate boundary condition—typically
a terminal payoff) can be attacked by various analytical and numerical techniques.

Note that the drift of X appears only in the “risk-adjusted” drift of of V,
My (z,t) — Sy (x,t) "IL(z). and only in “risk-adjusted” form itself:

fix (x) = px () — ox () " L(z), (2.13)

Therefore, if the i-th state variable happens to be the value of an asset that pays no
dividends, then by the absence-of-arbitrage the i-th component of jix(z) is z; R(z)
and the i-th component of px (x) need not be specified. Moreover, if all of the state
variables are asset-values for non-dividend paying assets, then jix(x) = zR(z) and
once Mp(z) := Mp(z) — Sp(z) "L(z) is specified, and no knowledge of px(z) or
L(x) is required.

“Note that using (2.6) we can write (2.10) as
{uv @) +0@)} = r(t) = Bov {m(t) — (1)},

where
By = A(t) Tov ()
S YOI RN

which shows that the excess total return on an asset is proportional to the excess return on the
deflator—asset.
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The classic example is the case where V' is the value of a European call option on
a stock that pays no dividends prior to the expiration of the call, where the value
of the stock is the single state variable. Since the call option pays no dividends,
iap(t) = ap(t) = 0. The value of the stock is assumed to follow geometric Brownian
motion, so that px(t) = X (¢t) p and ox(t) = X(t) 0. The interest rate and the price
of risk are assumed to be constant, r(t) = r and A\(t) = A\. However, since the only
state variable is the value of an asset that pays no dividends, neither A nor u need
be specified: fix(x) = xzr. For a call option that expires at time 7 with a strike
price of K, the payoff function is V(z, 7) = max(x — K, 0).

Clearly different payoff functions deliver different asset values, i.e. different so-
lutions to the PDE. If one could once and for all find the value of a unit payoff in
each state of the world (these are known as Arrow—Debreu state prices), then one
could compute the value of any asset by adding up the values of the payoffs for
that asset. Such a solution to a PDE is known as the fundamental solution or the
Green’s function, where payoff function is a Dirac delta function

Three fixed-income examples. It is instructive to consider three examples bond-
like assets. First, consider a default-free zero-coupon bond that pays one unit at
time 7. Denote its value at time ¢ by b(¢, 7). We may model the payoff to this asset
as follows: It pays no dividends, b(7,7) = 1, b(s,7) = 0 for s > 7. In this case
formula (2.8) produces

n(r)
b(t,7)=FE . 2.14

=5 [55] 210
Second, consider an asset that pays a continuous risk-adjusted dividend equal to
one forever. In this case (2.8) produces

V(t) = E, [/:j%ds} :/:Et {%} ds:/:otb(t, s)ds, (2.15)

which shows that the value of this perpetuity is the integral of zero-coupon bond
prices. Third, consider an asset that pays no dividends and has no instantaneous
volatility, oy = 0. Let [(t) denote its value at time ¢. Condition (2.9) implies
dB(t) = r(t) 5(t) dt, and we see that [ is the value of the money-market account:

o) =50 exo ([ ") ).

=0
More generally, for a positive asset that pays no dividends, we have

py (t) =7(t) + At) oy (1)

Changing the numeraire. Suppose we change the units in which asset values and
cumulative dividends are measured according to (2.4). In addition, let us define a
new state—price deflator as the inverse of the original deflator—asset denominated in
the new units:

nY (t) := = : (2.16)
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The dynamics of the new state—price deflator are given by

%ng—w@ﬁ—hﬁfﬂwm
where
ry(t) = r(t) + py (8) — A(0) Ty (8) — [lo (8) (2.17a)
Ay (1) = A(t) + oy (D). (2.17b)

Together these changes leave the expression for security prices (2.8) formally un-
changed:

nY (1 T nY (s
V) =B SV @ [ () - e b () ds] (219

We are free to choose the numeraire in which to model the state—price deflator.
It is natural to think of Y as the exchange rate between two numeraires. Moreover,
from a modeling perspective, we are free to model the state—price deflator measured
in terms of two numeraires and then derive the dynamics of the deflator via the
absence of arbitrage. In this case we model r, A, ry, and Ay and solve (2.17) for
uy and oy. This approach is useful in modeling, for example, the price level or the
foreign-exchange rate as the ratio of two state—price deflators. On the other hand,
if Y is the inverse of the value of a positive asset, then nY is just the deflated value
of the asset.

Two examples are noteworthy. First, consider the value of a zero-coupon bond:
b(t,7) = Ei[n(7)/n(t)] in terms of the given numeraire. After deflation by Y, the
value of the bond in terms of the new numeraire is the value of the deflator:

n” (1)
Y(t)b(t,7) = Ey [ny(t) Y(T):| .

Second, consider the value of a perpetuity: z(t) = [°,b(t,s)ds in the given nu-
meraire. After deflation by Y, the value of the perpetuity in terms of the new

numeraire is

o0 nY (s ]
V(t) 2(t) = / Et{nyit)) V()| ds. (2.19)

=t

If we define V =Y z and § = 1/z, then (2.19) can be expressed as

o) nY( s) b

V(t) = By | =5 V(s)o(s)| ds. (2.20)
s=t n (t) J

Equation (2.20) shows that—by changing the numeraire—the value of a perpetuity

can always be expressed as the value of a positive asset with a positive, predictable

dividend rate. Conversely, by choosing Y = 1/(V §), the inverse of the dividend

rate for such an asset can always be expressed as the value of a perpetuity.
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Converting a dividend-paying asset into an asset that pays no dividends.
Suppose we reinvest the dividends from an asset back into the asset. In order to do
this, the asset must have a non-zero value, which we assume is positive. How will
this investment’s value evolve? Let 0 be a scalar self-financing trading strategy:
¢
0(t)V(t)=0(0)V(0)+ 0(s)dG(s),

or in differential form, d{6(¢) V(¢)} = 0(t) dG(t)j so that
oV} G

. 2.21
OV V0 (220
Equation (2.21) implies the following dynamics for 6:
o) _ {5(75) - JD(t)TaV(t)} dt + op(t)TdW (t). (2.22)
0(t)
If the cumulative dividend is predictable, we can solve (2.22) for
¢
6(t) = 0(0) exp ( d(s) ds> .
s=0

Note that we have an asset that has a positive value that pays no dividends. See
Gilles and LeRoy (1997) for a rigorous treatment of securities of this sort.

Equivalent martingale measures. Choose a positive asset z that pays no divi-
dends:

d;(%) = {r(t) + AO) To () dt + o.(1) TdW (1), (2.23)
Define a new measure Q(z) via Girsanov’s theorem such that
dW,(t) = dW (t) + (A(t) — o.(t)) dt, (2.24)

where W, is a vector of standard Brownian motions under Q(z). The dynamics of
asset prices and cumulative dividends under Q(z) are given by

av () = (v (t) = () = 0=(6) Tov(B)) dt + v (1) dW. (t)
= i (1) dt + oy () AW (1)
and
aD(t) = (ip(t) = (A®) = o-(1) Top(t) ) dt + op(t) T dW-(1)
= ip(t) dt + op(t) TdWL(t).
In particular we have

dz(t)
z(t)

= {r(t) + o)} dt + 0. (t) TdW.(¢). (2.25)
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Define n, := 1/z. The dynamics of n, under Q(z) are

dn.(t) . o) T
e = —r(t)di — 0. (t) W0 20

= —r(t)dt — \.(t)TdW.(t).

Note that the relative drift of n, under Q(z) is the same as the relative drift of n
under the physical measure.

Let EtQ (Z)[-] be the conditional expectation operator under Q(z), and let G* be
the deflated gain where the deflator is n,. Then by the absence of arbitrage G* is
a martingale under Q(z):

G7(t) = B2¥ (G (). (2.27)

Of course, (2.27) can be written as a valuation formula:

v = 520 |0V [C 2 (w0 A o)) ds] . 229)

n(t) —¢ ()
where, as it turns out,
ih(s) = As(s) ap(s) = in(s) — A(s) " on(s).

We briefly discuss three equivalent martingale measures. First, let the deflator—
asset be the money-market account, z(t) = 5(t). Then

Z((i)) _ % — exp <_ /u :tr(u) du> . (2.29)

We can write (2.28) as

V(t) = EC [exp <— / Ttr(u) du> Vir) + / Tt exp (- /u str(u) du> i (s) ds} ,

(2.30)

where we have abbreviated Q(3) as Q. Note that there is no explicit reference to A
in (2.30). We can model r and ﬂ% directly under this equivalent martingale measure
without reference to the price of risk or the physical measure.

As an example of a financial variable that has a particularly simple representation
under Q, we examine an asset whose value is identically zero but nonetheless pays a
dividend. We can interpret this asset as a continuously resettled contingent claim,
such as a futures contract. Condition (2.9) says that fip(t) = A(t) &p(t), which
implies that D is a martingale under ©. Now suppose that

dD(t) = A(t) dt + dF (1),

and that for some fixed time 7 > ¢, F(7) = U(7). At this point, we can interpret
F(t) as the futures price at time ¢ for “delivery” of U at time 7 and A(¢) as a
contractually determined dividend that accrues to the holder of the futures position.
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(A standard futures contract has A = 0.) Then the martingale property of D under
Q immediately delivers the following representation for the futures price:’

A(s) ds} .

Second, let the deflator—asset be the zero-coupon bond that matures at time 7,
z(t) = b(t, 7). Then

F(t)=EP [U(T) o

s=t

n.(s) _ b(t,T)
n.(t)  b(s,7)

For an asset that pays no dividends, we have the following simple pricing formula:

V(t) =b(t,7) BT V(1)) (2.31)
since b(r,7) = 1 and b(¢,7) is measurable at time t. When the interest rate is
deterministic, b(¢,7) = exp (— [/_,r(u)du), and therefore Q(7) is the same as

Q(B)-

For example, consider F(t,7), the forward price at time ¢ for “delivery” of U at
time 7. The payoff at time 7 is U(7) — F(¢, 7). The forward price is set at time ¢
so that the value of the payoff is zero:

blt, ) EX7 (U (r) = F(t,7)] =0,
which delivers a representation for the forward price,
o(r
F(t,r) = B2V [U(r)].

Note that when the interest rate is deterministic, the forward price equals the futures
price (for a standard futures contract).

Third, assuming V' is a positive asset, let z(¢) = 6(¢) V (t) where 6 is the trading
strategy defined in the previous section that reinvests the dividends of V' back into
itself. We further suppose that the cumulative dividend process is predictable. In
this case we have

ni(s) OOV ; V()
na(t) 05 V(s) P <‘ R d“) V(s) (2.32)

Using (2.32) we can write

2= v () 1 / " 28 () s

Ny (t) =t Nz (t)

= V(t) {exp <— /8;5(%0 dU> + /;t exp <— /u;‘s(“) d“) o) ds} (2.33)

=V(),
and therefore (2.28) becomes the identity
Q(V
V(D) = BV W)

See Duffie and Stanton (1992) for a derivation of this and other results in a Markovian setting.
We can easily extend our representation to allow for an unpredictable contractually determined
cumulative dividend.
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This identity is at the heart of the change-of-measure variance-reduction technique
for Monte Carlo simulations of asset prices. It says that there is an equivalent mar-
tingale measure under which the deflated value of the asset is constant. Of course
in order to change the measure we have to know oy (¢) which assumes we have the
solution already.® Nevertheless, it suggests how to use related assets appropriately.

Infinitely-lived assets. For an infinitely-lived positive asset with predictable cu-
mulative dividends, (2.8) becomes

Vi) = B, [ / i % V(s)d(s) ds] . (2.34)

Equation (2.34) is homogeneous in V: Replacing V' (u) with o V' (u) everywhere in
(2.34) does not affect the equality. In essence, (2.34) is not an equation about V,

rather it is about 8.7 If § is strictly positive, we can change the numeraire with
Y =1/(V6), so that (2.34) can be written as

% = /:i E, [%] ds = /scxz l;(t, s)ds, (2.35)

where A(t) := n(t) {V(t)6(t)} and b(t,s) := E[a(s)/n(t)]. BEquation (2.35) shows
that under these circumstances the inverse of the dividend rate can be expressed
as the value of a perpetuity—where the state—price deflator is the deflated value of
the dividend.®

Since the dividend rate is positive, we can write its dynamics as

%(t? = ps(t) dt + os(t) T dW (t).

Now let z(t) := 1/6(t), so that dz(t)/z(t) = p.(t) dt + o.(t) " dW (t), where

pz(t) = —ps(t) + llos(t)]>
o,(t) = —os(t).

Since z(t) is the value of a perpetuity, the perpetuity’s dividend rate is 1/z(t). In
terms of the new numeraire, the absence-of-arbitrage condition (2.10) is

o (t) + % = 7(t) + \(t) "o, (t), (2.36)
where

dn(t)

0}
If we choose to introduce the dynamics of the state variables into the model via 7
and A, then (2.36) becomes the partial differential equation that must be solved to

= —#(t)dt — A(t) TdW (¢).

5Note that the relative volatility of § V' is the same as the relative volatility of V when the cumulative
dividend is predictable.

"This is related to the fact that one cannot tell whether we have an endowment economy or a
production economy.

8Note however that da(t) —dD™(t) = {V(t) §(t)} dn(t) # 0.
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find z (and hence ¢) as a function of the state variables. The route to solving (2.36)
is to solve the PDE for bond prices, b(t,7) and integrate:

fin(t, 7) — @) T 63(t, ) = (1),
where

C{b(t’ ") - fip(t, 7) dt + G4(t, 7) T dW (t).
b(t, )

At this point, we change our perspective a bit, and interpret the deflated value
of the asset, V"(t) = n(t) V(t), as a stateprice deflator for payoffs denominated
in units of the asset’s value. In other words, let Y = 1/V. The dynamics of this
state—price deflator can be written

dV™(¢)

v —ry(t) dt — Ay (t) TdW (1), (2.37a)

where
rv(t) = 8(t) (2.37b)
Av(t) = A(t) — oy (b). (2.37¢)

If we choose introduce the dynamics of the state variables into the model via 7y
and Ay, then there is no differential equation to solve, and the absence-of-arbitrage
delivers the dynamics V' directly via V = V" /n.

3. UTILITY AND GENERAL EQUILIBRIUM

Duffie and Skiadas (1994) demonstrate a very useful equivalence in a in a very
general setting. They consider

a continuous-time security market where prices are modeled by semi-
martingales (allowing for jumps, and therefore incorporating discrete
time as a special case). The underlying information filtration is general,
and the market is not necessarily complete.

In such a setting, they show that

the first-order conditions for optimality of an agent maximizing a ‘smooth’
utility can be formulated as the martingale property of prices, after nor-
malization by a ‘state—price’ process.

In addition, they show that the state—price deflator

is given explicitly in terms of the agent’s utility gradient, which is in turn
computed in closed-form for a wide class of dynamics utilities, including
the stochastic differential utility ... .

Stochastic Differential Utility. Here we introduce the preferences of the repre-
sentative agent. As explained by Duffie and Epstein (1992a) and Duffie and Epstein
(1992b), stochastic differential utility SDU can be represented by a pair of func-
tions (f, A) called an aggregator. The functions f and A can be chosen to capture
separately attitudes toward intertemporal substitution and attitudes toward risk.
Hypothetical experiments can be conducted, for example, by fixing f and varying
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A to study the effect of increasing risk aversion. Importantly, though, there exists
a normalized form of SDU (f, A) where A = 0. By using the normalized aggregator
significant analytical simplification is achieved, although the convenient separation
referred to above is lost since both aspects of preferences are combined in f. Since we
only deal with the normalized aggregator, we drop the bar for notational simplicity.

When the normalized aggregator is used, the recursive nature of utility is ex-
pressed in the following representation:

v<t>=Et[ " Fle(s), V(s)) ds| (3.1)

s=t

where V(t) is the utility at time ¢ of the consumption process ¢. The dynamics of
V are given by

dV(t) = py(t) dt + op(t) T dW (2),
where
pv(t) = —f(c(t), V(). (32)
Duffie and Skiadas (1994) show that the state—price deflator is given by

n(t) = exp { fule(s).V(5)) ds} fule(). V(). (3.3)

where f. and f, are the the partial derivatives of f and where c is the optimal rate
of consumption. Suppressing arguments, let the dynamics of f. be given by

dfe

t

s=0

A dt + o dW. (3.4)
Then, given (3.3) and (3.4), we can write
i _ D\ yar,
n fe
so that
r=—(us + fo) (3.5a)
A= —oy,. (3.5b)

Equations (3.5) are general equilibrium expressions for the interest rate and the
price of risk in terms of the utility function and the dynamics of optimal consump-
tion. Inserting (3.5) into (2.9) produces a general-equilibrium valuation equation.
However, in order to follow this route, we need to be able to evaluate (3.3) given
the process for consumption. Equation (3.2) is the key.

Equation (3.2) is the central restriction for a model of stochastic differential util-
ity. In a Markovian setting, (3.2) becomes a PDE. Duffie and Lions (1992) address
the existence and uniqueness of V when ¢ is modeled in terms of state variables
(where c itself may be a state variable). For example, let V(t) = H(X(t),c(t))
where X is a vector of Markovian state variables that describe the dynamics of
¢ and H(z,c) is an unknown function. The joint dynamics of ¢ and X define a
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differential operator D such that uy (t) = DH(X(t),c(t)). With this setup, (3.2)
becomes the PDE

DH(z,c) = —f(c, H(z,c)). (3.6)

One can insert the solution to (3.6) for H into (3.3) and use Ito’s lemma to deliver
expressions for r and X in terms of the state variables. These expressions for the
basis for the valuation equation—i.e., the absence-of-arbitrage equation, for example
(2.9). When this valuation equation is applied to the capital stock (wealth), it
delivers the optimal relationship between capital and consumption.

A different approach is to transform (3.2) directly into the Bellman equation for
SDU by imposing conditions for the optimality of consumption relative to wealth
(by imposing the envelope condition that the marginal utility of consumption equal
the marginal utility of wealth). We pursue this approach below.

Special case: Time-separable utility. Time-separable utility is a special case of
SDU where one does not need to solve (3.6) in order to find the state—price deflator.
With time-separable utility, utility can be written as

V(t) = E { / e 1Dy e(t)) ds} = / e 7D By [u(c(t))] ds. (3.7)
s=t s=t
where 6 is the rate of time preference and c¢(t) is the rate of consumption at time
t. Applying Ito’s lemma to (3.7) (and using the fact that conditional expectations
are martingales) produces
dV(t) = (0V(t) — u(c(t)) dt + ov(t) " dW (¢). (3.8)
Since py(t) = —f(c(t), V(t)), (3.8) shows that with time-separable preferences the
normalized aggregator can be written
f(cv U) = U(C) - 9U7
so that f,(c,v) = —0 and f.(c,v) = u/(c).
In this case, the state—price deflator is given by

n(t) = e %t/ (c(t)), (3.9)

where c¢(t) is the optimal rate of consumption. Therefore, in terms of the dynamics
of the growth rate of optimal consumption,

dlog(c(t)) = fic(t) dt + oc(t) " dW (1),
applying Ito’s lemma to (3.9) we get
B c(t)u”(e(t)) (- 1

r( =0 - S (7o) + 5 loute)

A(t) = —% oo (t). (3.10b)

Inserting (3.10) into (2.9) delivers a general-equilibrium valuation formula. This is
in essence what Bakshi and Chen (1997) do. Note that if we change both u(-) and
dlog(c(t)) in such a way as to leave dn(t)/n(t) unchanged, then the two economies

5 loe@)|? (3.10a)

H2> _c®)?u(e(t) 1
u'(c(t)) 2
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will have identical interest-rate and price-of-risk processes and hence identical val-
uation formulas.”

The capital stock, consumption, and the capital account. Our central as-
sumption here is that the dividend that accrues to the owners of the the aggre-
gate capital stock is aggregate consumption. Let c¢(t) be the aggregate rate of
consumption and k(t) be the value of the aggregate capital stock. We treat the
aggregate capital stock as synonymous with wealth. Define w(t) := ¢(t)/k(t) as the
consumption—capital ratio. In this case we can write the value of the capital stock

as follows:
k() = Br [ / h (”(s)> k(s) w(s) ds] . (3.11)

—¢ \n(t)
Given the framework outlined in Section 2 in and given

%(tt)) = p(t) dt + o (t) T dW (1), (3.12)

three useful representations follow immediately. First, we have the absence-of-
arbitrage condition for the capital stock:
i (t) +w(t) = r(t) + M) Tow(t). (3.13)
Second, we can let the deflated value of the capital stock be a state—price deflator:
my(t) := m(t) k(t). Given (2.37), we have
dmy(t)
mi(t)

We see that we can model w and A\ — o} independently. Third, we can write the
inverse of the consumption—capital ratio, as a perpetuity:

s [ 2] [

where 7(t) := m(t) k(t) w(t) = m(t) c(t) and b(t, T) = E[rm(T)/m(t)]. Let n(t) :=
1/w(t) = k(t)/c(t) be the capital-consumption ratio. Then the absence-of-arbitrage
condition for the capital stock can be written

= —w(t) dt + (op(t) — A(£)) TdW (¢). (3.14)

1 .
— =)+ \t) "o, (2). 1
55 = 70+ 30 Tox(0 (315)
We define the capital account as follows:

6(t) = K(t) exp ( / " o) ds> . (3.16)

=0

pr(t) +

Therefore we have

do(t) _ dk(t) |
5 = hp e (3.17)

9This point is illustrated (with a slight error) by Bakshi and Chen (1997).
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and
T

olt) = 1) + A(0) o (8) (3.18a)

o4(t) = op(t). (3.18Db)
We can interpret d¢(t)/¢(t) as the return on optimally invested wealth in either
an endowment economy or a production economy with linear technology. In a
production economy, we require linear technology to guarantee that the dividend
rate only involves consumption and not the difference between average and marginal

productivity. In an endowment economy, even though the “optimal portfolio” is
given exogenously, the interpretation is still valid.

Kreps—Porteus SDU. For Kreps—Porteus SDU, the normalized form of the ag-

gregator is'?
Oa (110 1
f(C,U): ( 1_1/77 )a a:1+(1_7)vv (319)
where 6, 1, and y are constant parameters, and the parameter ¢ is defined by
_ 1=
S 1-1/n

For the cases v =1 and nn = 1, we get the normalized aggregator by taking a limit
in (3.19). As shown by Duffie and Epstein (1992a), these preferences allow a disen-
tangling of attitudes toward risk from attitudes toward intertemporal substitution.
In this parameterization, n > 0 is the elasticity of intertemporal substitution, v > 0
is the coefficient of relative risk aversion and, 8 > 0 is the rate of time preference.
When v7n = 1, in which case § = 1, Kreps—Porteus SDU specializes to standard
time-separable preferences with power utility, as we will see below.

On the optimal path, consumption and continuation utility can be written as
follows (where V(t) is replaced by the obvious limit when v = 1):

c(t) = 07 (t) T E(L) (3.20a)
_ @k@) T —1
V(t) = T : (3.20b)

The process 1 is related to the marginal utility of wealth.'’ The optimality of (3.20)
requires that (3.2) hold identically for some processes k and . Along the optimal
path, the normalized aggregator is given by

Y 1-n _
ety = oy~ {ZH0 20 (321)

We find py as follows. The consumption—capital ratio can be expressed in terms of
P
w(t) = 0" (t) (3.22)

10The functional form of the aggregator comes from the unnumbered equation in the middle of p.
420 in Duffie and Epstein (1992a). Their p is 1 — 1/7, their o is 1 — v, and their 3 is . Note that
we have replaced (1 —v)v by 1+ (1 — ) v in order to take the limit as v — 1.

Uletting V(t) == (1 =) V() + DY 9 V() /9 k(L) = (t).



18 MARK FISHER AND CHRISTIAN GILLES

which can be used to write

dlog(k(t)) = dlog(é(t)) — 07 ((t)! " dt,

where
dlog(1(t)) = Fiu(£) dt + oy (t) AV (1),
Now applying Ito’s lemma to (3.20b) produces

pl6) = O K {t) + 7u(0)+ (1=9) 3 loult) + au 0P = 670! |

(3.23)
Finally, substituting (3.21) and (3.23) into (3.2) produces
Oyt —no _ 1
=004 B0+ o)+ (1= ) 5 loa(®) + 000 0. (320

Equation (3.24) is the central restriction for Kreps—Porteus SDU. We see that k& does
not enter (3.24). Thus, for any 1 that satisfies (3.24), (3.20) is optimal. Moreover,
given the the equivalence established by Duffie and Skiadas (1994) between (i) the
first order conditions for the optimality of consumption and (4i) the martingale
property of deflated asset prices, (3.24) is equivalent to the absence-of-arbitrage
condition for the capital account. This can be verified directly once the state—price
deflator is derived (see (3.27) below) by showing that m(t) ¢(t) is a martingale given
(3.20) if and only if (3.24) holds.

In a Markovian setting, (3.24) is the Bellman equation—the PDE that ) must
satisfy as a function of the state variables. We now show that in a Markovian
setting the first-order condition for the Bellman equation (the envelope condition)
is satisfied. Let X be a vector of state variables. The optimal rate of consumption
and the maximized value of utility depend on the state variables and wealth as

follows: ¢(t) = C(X(t),k(t)) and V(t) = J(X(t), k(t)), where

(U(x) k)7 —1
1—v '

Let Ji and f. denote the obvious partial derivatives. One can verify that (3.19) and

(3.25) satisfy the envelope condition identically:

Ji(x, k) = fo(Cz, k), J(x, k) = & (z) 77 k.

Therefore, the solution to the optimum control problem is reduced to finding the
function ¥(z) that satisfies a Markovian version of (3.24) (in which 1z, (t) and o(%)
are determined by functions of the same state variables).

C(x, k) =0"0(z)' ™"k and J(z,k) =

(3.25)

The state—price deflator for Kreps—Porteus SDU. Given (3.20), the partial
derivatives of f on the optimal path can be written as

fele(®), V(1) = () 7 k()™ (3.26a)

fole(t), V(1) = (1—7)0n+ (17? ; 1)0" w(t)l—"'

(3.26b)
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We obtain a representation of the state-price deflator simply by inserting (3.26) into
(3.3):

m(t) = exp </t:0 Lont (ﬁ; SLAC ds) Yk (3.27)

We can solve for the interest rate and the price of risk by applying Ito’s lemma
to (3.27) and using (2.5):

T(t) = ’Yﬁ¢(t) + (7 — 1) ﬁw(t) + (1- ’y) (6’7177{(21—77 _ 770)

A(t) =y0op(t) + (v = 1) oy (). (3.29)
Equations (3.28) impound in asset prices all the characteristics of preferences we
need to solve for the equilibrium. In other words, once we have (3.28), the we do not
need the value function itself for asset pricing or for the dynamics of consumption.

The question remains as to how to find . We pursue two approaches.
Using (3.22) and (3.27), the dynamics of the deflated value of the capital stock
(3.14) can be written

dmk (t)
mi(t)
Since my(t) = m(t) k(t) can be interpreted as a state—price deflator, we are free to
model its drift and diffusion independently. Therefore, we are free to model ¥ and

o4. Having done so, (3.24) can be solved algebraically for fi,. Moreover, we can
solve for the dynamics of consumption growth and the state—price deflator:

—s P (329

= —0"9)()! T dt + (1 =) (0 (t) + (1) AW (1),

— " ]
o) = I+ G- Dglo w3300
_ 1-
o) = 20O Gk G- gl Foull (3300)
_ 1-
) == D )40 (- D g a0 + o0 - NP
(3.30¢)
0u(t) = oult) + (1= m)ou(?) (3.300)
oolt) = oyt (3.300)
\E) =7 00(0) + (= 1) () (3.300)
Note that
_ 1-
Jim n? Zajqf(t) n:alog<@> (3.31a)
_ 1-
Jim n? nojqf(t) n:am(@)w. (3.31D)

Equations (3.30) give a complete algebraic solution to the model if we choose to
introduce the state variables directly though 1 and o4. We are free to choose how
1 and o4 behave and free to choose the three preference parameters 6, -, and 7.
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In particular, let ¢ (t) = ¥(X(t)) and 04(t) = 0a(X(t)), where ¥(z) and og(x) are
arbitrarily chosen functions. Specify the dynamics of the Markovian state variables,
X. Ito’s lemma then delivers i, (t) and oy (t) as functions of the state variables (and
their dynamics). Equation (3.30) determines the rest of the model algebraically.'?
Note that given the solution just described and recalling (3.25), we now can price any
contingent claim along the lines of Cox, Ingersoll, Jr., and Ross (1985a), applying
the fundamental valuation equation of their Theorem 3.

The perpetuity equation. If we choose instead to introduce the state variables
via the dynamics of the capital account or consumption or the state—price deflator,
then we will have to solve (3.24) as a PDE. Recall the absence-of-arbitrage condition
for the capital-stock-as-perpetuity (3.15), which we repeat here for convenience:

~ 1 . <

Tin(t) + —= = #(t) + A(t) "o (t). (3.15)

7(t)
When n = 1, (3.15) devolves to an identity. Otherwise, it forms the basis for finding
tractable solutions. Let y be the forcing process, where y is either ¢ or ¢ or 1/m.
ox(t)

Then we can write
2
— 3.32
4, } (3.32a)

A(t) = —dg oy (2). (3.32b)

where d; depends only on 7 and dy depends only on . (See Table 1 for the particular
values.) Given p, and o,, we can solve (3.15) for 7. The remaining drifts and
diffusions can be found via (3.30).13

N - 1 1
F(t) = {do +dy fiy(t) + di do 5 Hay(t)HQ} + {5 dy =

2

y(t) ﬁy(t) O'y(t) do d1 d2 d3 g = d1 + dg
() fig (1) op(t) m0 1—-n 1—v -1 2-n—1
c(t) fic(t) ot) 0 11—y 0 1y
1/m(t) r@®)+5AOI° A®) 70 1-n 2 -1 1-g
TABLE 1. The coefficients of Equations (3.32) and (3.35) in terms
of the preference parameters.
When 1 = 1, we take a different tack. Note that
0Tp() T -0 »(t)

12Note that although we can get both 7 and A algebraically from (3.30), will still need to use them
to solve the bond-price PDE to get the term structure. Therefore, for some purposes, it may be
preferable to model r and A directly in terms of the state variables.

131t turns out that other drifts and diffusions can always be expressed in terms of fi,, oy, and o
without fir.
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Therefore we can write (3.24) as

=0 (1+1log(4(t)/0)) + pry () + (1 = 7) % low(t) + oy (B)]|* = 0. (3.34)

In terms of y, we can write (3.34) as

0 log(v(t)/0) = d3 0 + 1y (t) + puy(t) + % lloy () + o (8)]?, (3.35)

where ds and ds are given in Table 1.

The value of currency and the nominal interest rate. If we put real balances
in a time-separable utility function, we have

f(e,m,v) =u(c,m) — O,
so that f,(c,v) = =0, f.(c,v) = u.(c,m), and the state—price deflator is given by
n(t) = e "t uc(c(t), m(t)).

In addition, we have the first-order condition that the rental rate of money equal
the marginal rate of substitution:

_ fm(c,v) _ U (c,m)
fe(c,v) uc(c,m)’

R(t)

where R is the instantaneous nominal interest rate.'
Now consider the value of currency, V(t) = 1/P(t). In this case we model the
nominal state—price deflator:

n(t) = %’
where
dna(t) —R(t)dt — A(t)TdW (1).
n1(t)

The dividend rate is the nominal interest rate R(¢) and the nominal price of risk is
the sum of the real price of risk and inflation volatility, A(¢) = A(t) + op(t). The
dynamics of inflation are given by applying Ito’s lemma to P(t) = n(t)/ni(t):

dlog(P(t)) = n(t)dt + op(t) " dW (1),
where

(t) = R(t) —r(t) + 5 (IA@)I = [A®I)

N =

'4See Duffie and Epstein (1992a) for a discussion of the multiple-goods case.
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With money in a time-separable utility function, we have!® 16

M
U, (c(t), T(tt)))
M)\
Ue (C(t), W)
Given that we have already solved for the dynamics of R(t), ¢(t), and P(t), we can

apply Ito’s lemma to this condition to recover the dynamics of equilibrium money
money supply. For example let

R(t) = (3.36)

cl=n — ml—¢ —
u(e,m) = <1+771) (1= 7) (ﬁ) , (3.37)
so that
uc(e,m) =~yc " (3.38a)
U (c,m) = (1 —y)m™Y. (3.38b)

In this case we have n(t) = e ?*¢(t)™", which is a special case of the stateprice
deflator presented above with § = 1.
With this utility function, (3.36) becomes

Ml _ (1) el (339
Pty \ v R(t)1/¥’ '

and we see that the elasticity of demand for real balances with respect to con-
sumption and the nominal interest rate are given by n/¢ and —1/1 respectively.

Applying Ito’s lemma to (3.36) in this case produces

=m0 s ) o (2 i

) = 5 (RO -0~ fme) + 5 INOI) + (S ) w0 (300
1 s -1y

71(6) = 5 (A = onlt) + (25 ) ol (3.40)

where

dlog(R(t)) = fip(t) dt + or(t) TdW (t).

APPENDIX A. A NOTE ON CIR’S CRITIQUE OF THE ARBITRAGE APPROACH TO
BOND PRICING

Cox, Ingersoll, Jr., and Ross (1985b) critique what they call “bond pricing by
arbitrage methods.” They focus their discussion on the PDE for bond prices where
there is a single state variable, the instantaneous interest rate r. The dynamics of
r under the physical measure given by

dr =k (0 —r)dt+o+/rdW(t).

15See Bakshi and Chen (1996) for an analysis of this model.
16See Appendix B for an example of money in a recursive utility function.
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The PDE is given as their equation (33),

1
5027‘]3”+/£(0—T)Pr+Pt—rP:Y(r,t,T).

where P is the price of a zero-coupon bond of that matures at time 7" and Y (r,¢,T")
is “the excess expected return on a bond with maturity date T.” Clearly, Y is the
product of the (absolute) volatility of the bond price, o /r P, times the price of
risk, A(r).}" CIR write

Y(r,t,T) =¢(r) B,
which implies

U(r) = o VrA(r).

In their example, CIR set ¥ (r) = 19+ r, where ¢y and 1; are non-zero constants.
We can see the problem by solving for A(r):

A(r) = ;ﬁi;; _ 1/100+\/ié17‘.

Note that
lim |A(r)] = oo.
r—0

Clearly this is a bad modeling choice. Indeed, one is not free to model the price of
risk in such a way as to preclude the existence of the state—price deflator. Note that
CIR do not show that one cannot model r and X independently. In fact, one can.

APPENDIX B. MONEY IN A RECURSIVE UTILITY FUNCTION
Refer to Fisher and Gilles (1997). Let
_ 0 (g(m) A=/ — {1+(1—7) v}l/‘s)

fle,m,v) = SIS
and keep
c(t) = w(t) k(t) (B.1a)
1—
v = O kl(ti),y =t (B.1b)
But let the consumption—capital ratio w(t) is defined in terms of the function ((t)
by:
w(t) = gm)7 97 (1), (B.2)
Given (B.1), the partial derivatives of f on the optimal path can be written as
Fele(®), V(1) = g(m) C(&) 7 k()™ (B.3a)
and
folc(t), V(1) = =00+ (5§ — 1) w(t). (B.3b)

This is not CIR’s parameter \.
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The state—price deflator is given by

n(t) = e~ o(t) 0/ (1)1 g(m(1)).
The first-order condition for money, R = f,./f., is

g m()
B =T /m) gtm®)

A natural choice for g is g(m) = m!'~%, in which case we have

n(t) =e Pt c(t) =M p(t)" m(t)' Y
t
tz( —1/n> O}
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