MAXIMUM ENTROPY ON A SIMPLEX: AN EXPOSITORY NOTE

MARK FISHER

Preliminary and incomplete

ABSTRACT. The Gibbs distribution $f(x) = e^{-\lambda^{\top} x}/Z(\lambda)$ for $x = \{x_1, \ldots, x_n\}$ defined over the region where $x_i \ge 0$ and $\sum_{i=1}^n x_i \le 1$ characterizes the maximum entropy distribution on a simplex subject to $E[x] = \mu$. An explicit representation for $Z(\lambda)$ is derived.

1. Preliminaries

Let $x = \{x_i\}_{i=1}^n$ where $x_i \ge 0$ and $\sum_{i=1}^n x_i \le b$ for some $b \ge 0$ and define $x_{n+1} := b - \sum_{i=1}^n x_i$.¹ Then $\widetilde{x} := \{x_i\}_{i=1}^{n+1}$ lies on an *n*-dimensional (generalized) simplex denoted Δ_b^n . Let $\Delta^n \equiv \Delta_1^n$ denote the *n*-dimensional (ordinary) simplex. We can express any function $\widetilde{g}(\widetilde{x}) = \widetilde{g}(x_1, \ldots, x_n, x_{n+1})$ subject to $x_{n+1} = b - \sum_{i=1}^n x_i$ as $g(x) = g(x_1, \ldots, x_n) := g(x_1, \ldots, x_n, b - \sum_{i=1}^n x_i)$. Moreover, $\int_{\Delta_b^n} \widetilde{g}(\widetilde{x}) d\widetilde{x} = \int_{\Delta_b^n} g(x) dx$, which can be computed as follows. Let $w = \{w_1, \ldots, w_n\}$ be a permutation of $\{1, \ldots, n\}$, so that w is a list of indices in some fixed order. Then²

$$\int_{\Delta_b^n} g(x) \, dx = \int_0^b dx_{w_1} \int_0^{b-x_{w_1}} dx_{w_2} \cdots \int_0^{b-\sum_{i=1}^{n-1} x_{w_i}} dx_{w_n} \, g(x). \tag{1.1}$$

The order of integration in (1.1) is from right to left; i.e., from x_{w_n} first to x_{w_1} last.

Let f(x) denote the joint probability density for x so that $\int_{\Delta^n} f(x) dx = 1$. Let μ denote the mean of x,

$$\mu = \langle x \rangle := E[x] := \int_{\Delta^n} x f(x) \, dx, \qquad (1.2)$$

and let Σ denote the covariance matrix of x,

$$\Sigma = E[(x - \mu) (x - \mu)^{\top}] = E[x x^{\top}] - \mu \mu^{\top} = \int_{\Delta^n} (x x^{\top}) f(x) dx - \mu \mu^{\top}, \qquad (1.3)$$

where x^{\top} denotes the transpose of x, so that $\Sigma_{ij} = E[x_i x_j] - \mu_i \mu_j = \langle x_i x_j \rangle - \langle x_i \rangle \langle x_j \rangle.^3$

²We are using the notation $\int dx_1 \int dx_2 g(x_1, x_2) \equiv \iint g(x_1, x_2) dx_2 dx_1$ on the right-hand side of (1.1).

³The mean of x_{n+1} is given by $\mu_{n+1} = 1 - \sum_{i=1}^{n} \mu_i$. The covariance between x_{n+1} and x_i equals $-\sum_{j=1}^{n} \Sigma_{ij}$ and the variance of x_{n+1} equals $\sum_{i=1}^{n} \sum_{j=1}^{n} \Sigma_{ij}$.

Date: March 19, 2006.

The views expressed herein are the author's and do not necessarily reflect those of the Federal Reserve Bank of Atlanta or the Federal Reserve System.

¹If n = 0, then $x_{n+1} = b$.

MARK FISHER

The classic distribution for x on Δ^n is the Dirichlet distribution, for which

$$f(x) = \frac{\Gamma\left(\sum_{i=1}^{n+1} \alpha_i\right)}{\prod_{i=1}^{n+1} \Gamma(\alpha_i)} x_1^{\alpha_1 - 1} \cdots x_n^{\alpha_n - 1} (1 - \sum_{i=1}^n x_i)^{\alpha_{n+1} - 1},$$
(1.4)

where $\alpha_i > 0$. In this note we consider an alternative distribution.

2. MAXIMUM ENTROPY DISTRIBUTIONS

Here we outline the derivation of the maximum entropy distribution for x over a generic region \mathcal{R}^4 . In Section 3 we will specialize to $\mathcal{R} = \Delta^n$.

The object is to find the continuous function f that maximizes the entropy

$$H = -\int_{\mathcal{R}} \log(f(x)) f(x) dx$$
(2.1)

subject to $\int_{\mathcal{R}} q(x) f(x) dx = \theta$ and $\int_{\mathcal{R}} f(x) dx = 1$ where q(x) is a vector function of x and θ is given. (We will be especially interested in q(x) = x.) To this end, form the Lagrangian

$$\mathcal{L} = -\int_{\mathcal{R}} \log(f(x)) f(x) \, dx - \lambda^{\top} \left(\int_{\mathcal{R}} q(x) f(x) \, dx - \theta \right) - \varphi \left(\int_{\mathcal{R}} f(x) \, dx - 1 \right), \quad (2.2)$$

where $\lambda = {\lambda_i}_{i=1}^k$ is a vector of Lagrange multipliers, φ is a scalar Lagrange multiplier, and θ is a k-dimensional vector. To apply the calculus of variations, express (2.2) as

$$\mathcal{L} = \int_{\mathcal{R}} g(x, f(x)) \, dx + \left(\lambda^{\top} \theta + \varphi\right), \tag{2.3}$$

where

$$g(x,y) = -\log(y) y - \left(\lambda^{\top} q(x)\right) y - \varphi y.$$
(2.4)

In this case, the first-order (Euler-Lagrange) condition is $\partial g(x,y)/\partial y = 0$, or⁵

$$-\log(f(x)) - 1 - \lambda^{\top} q(x) - \varphi = 0.$$
(2.5)

Exponentiating both sides of (2.5) and rearranging produces⁶

$$f(x) = e^{-(1+\varphi) - \lambda^{\top} q(x)}.$$
(2.6)

Define

$$Z(\lambda) := \int_{\mathcal{R}} e^{-\lambda^{\top} q(x)} \, dx.$$
(2.7)

Since $\int_{\mathcal{R}} f(x) dx = 1$, we have $e^{1+\varphi} = Z(\lambda)$, and we obtain the Gibbs distribution

$$f(x) = \frac{e^{-\lambda^{\top}q(x)}}{Z(\lambda)},$$
(2.8)

⁴See Jaynes (2003) for a discussion of maximum entropy.

⁵One would obtain this condition if one differentiated \mathcal{L} with respect to the 'probabilities' f(x), treating $\int_{\mathcal{R}} dx$ as a summation operator. ⁶The second-order (Legendre) condition for a maximum is $\partial^2 g(x,y)/\partial y^2 < 0$, which is satisfied since

 $⁻f(x)^{-1} < 0.$

where $Z(\lambda)$ is known as the partition function.⁷

Define

$$m(\lambda) := -\nabla_{\lambda} \log \left(Z(\lambda) \right) \quad \text{and} \quad S(\lambda) := \nabla_{\lambda}^{2} \log \left(Z(\lambda) \right).$$
(2.10)
We now show that $m(\lambda) = \theta$ and $S(\lambda) = E[q(x) q(x)^{\top}] - \theta \theta^{\top}$:

$$m(\lambda) = \frac{-\nabla_{\lambda} Z(\lambda)}{Z(\lambda)} = \frac{-\nabla_{\lambda} \int_{\mathcal{R}} e^{-\lambda^{+} q(x)} dx}{Z(\lambda)} = \frac{\int_{\mathcal{R}} \left(-\nabla_{\lambda} e^{-\lambda^{-} q(x)}\right) dx}{Z(\lambda)}$$
$$= \frac{\int_{\mathcal{R}} q(x) e^{-\lambda^{+} q(x)} dx}{Z(\lambda)} = \int_{\mathcal{R}} q(x) f(x) dx = \theta \quad (2.11)$$

and

$$S(\lambda) = -\nabla_{\lambda} m(\lambda) = -\nabla_{\lambda} \int_{\mathcal{R}} \frac{q(x) e^{-\lambda^{\top} q(x)}}{Z(\lambda)} dx = \int_{\mathcal{R}} \left(-\nabla_{\lambda} \frac{q(x) e^{-\lambda^{\top} q(x)}}{Z(\lambda)} \right) dx$$
$$= \int_{\mathcal{R}} \left(q(x) q(x)^{\top} - q(x) m(\lambda)^{\top} \right) \frac{e^{-\lambda^{\top} q(x)}}{Z(\lambda)} dx = \int_{\mathcal{R}} \left(q(x) q(x)^{\top} \right) f(x) dx - \theta \, \theta^{\top}. \quad (2.12)$$
For $q(x) = x$, we have $m(\lambda) = \mu$ and $S(\lambda) = \Sigma$.

For q(w) = w, we have $m(x) = \mu$ and v(x) = 2.

Two illustrations. Consider the following two illustrations for which n = 1. First, let $g(x) = x_1$ and let $\mathcal{R} = [0, \infty)$. In this case $Z(\lambda) = \lambda_1^{-1}$. We can solve $m(\lambda) = \theta$ for $\theta = \lambda_1^{-1}$. Consequently, $\lambda_1 e^{-\lambda_1 x_1} = e^{-\theta^{-1} x_1}/\theta$ is the exponential distribution.

Second, let $g(x) = (x_1, x_1^2)^{\top}$ and let $\mathcal{R} = (-\infty, \infty)$. In this case

$$Z(\lambda) = \frac{e^{\lambda_1^2/(4\lambda_2)}\sqrt{\pi}}{\sqrt{\lambda_2}}.$$
(2.13)

Letting $\theta_1 = \mu$ and $\theta_2 = \mu^2 + \sigma^2$, we can solve $m(\lambda) = \theta$ for

$$\lambda_1 = -\frac{\mu}{\sigma^2}$$
 and $\lambda_2 = \frac{1}{2\sigma^2}$ (2.14)

and consequently we obtain the Gaussian distribution:

$$\frac{e^{-\lambda_1 x_1 - \lambda_2 x_1^2}}{Z(\lambda)} = \frac{e^{-\frac{(x_1 - \mu)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}.$$
(2.15)

We note that λ_2 equals one-half the *precision* $1/\sigma^2$ and λ_1 equals the negative of the mean times the precision.

$$\widetilde{f}(\widetilde{x}) = f^{(j)}(\widetilde{x}^{(j)}) = \frac{e^{-(\widetilde{\lambda}^{(j)} - \lambda_j)^\top \widetilde{x}^{(j)}}}{e^{\lambda_j} Z(\widetilde{\lambda}^{(j)} - \lambda_j)}.$$
(2.9)

⁷The density for x is related to the density for \tilde{x} as follows. Define $\tilde{\lambda} := {\{\tilde{\lambda}_i\}}_{i=1}^{n+1}$. Then, for $x_{n+1} = 1 - \sum_{i=1}^n x_i$, $\tilde{f}(\tilde{x}) = e^{-\tilde{\lambda}^\top \tilde{x}} / \int_{\Delta^n} e^{-\tilde{\lambda}^\top \tilde{x}} d\tilde{x} = e^{-\lambda^\top x} / Z(\lambda) = f(x)$, where $\lambda_i = \tilde{\lambda}_i - \tilde{\lambda}_{n+1}$. More generally, let $\tilde{\lambda}^{(j)} := \tilde{\lambda} \setminus {\{\lambda_j\}}$ and $\tilde{x}^{(j)} := \tilde{x} \setminus {\{x_j\}}$. Then

MARK FISHER

Likelihood. Given N independent observations $\{X_i\}_{i=1}^N$, the likelihood for λ is

$$\prod_{i=1}^{N} f(X_i) = \prod_{i=1}^{N} \frac{e^{-\lambda^{\top} g(X_i)}}{Z(\lambda)} = \left(\frac{e^{-\lambda^{\top} \overline{g}}}{Z(\lambda)}\right)^N, \qquad (2.16)$$

where $\overline{g} = \frac{1}{N} \sum_{i=1}^{N} g(X_i)$. The log-likelihood is

$$\ell(\lambda) = -N\left(\lambda^{\top}\overline{g} + \log\left(Z(\lambda)\right)\right).$$
(2.17)

Thus

$$\nabla_{\lambda}\ell(\lambda) = -N\left(\overline{g} + \nabla_{\lambda}\log\left(Z(\lambda)\right)\right) = -N\left(\overline{g} - m(\lambda)\right)$$
(2.18)

$$\nabla_{\lambda}^{2}\ell(\lambda) = -N \nabla_{\lambda}^{2} \log\left(Z(\lambda)\right) = -N S(\lambda).$$
(2.19)

The maximum likelihood value for λ can be computed by solving $\nabla_{\lambda} \ell(\hat{\lambda}) = 0$ for $\hat{\lambda} = m^{-1}(\overline{g})$.⁸ In addition, the Gaussian approximation to the likelihood is proportional to

$$\exp\left(-\frac{N}{2}\left(\lambda-\widehat{\lambda}\right)^{\top}S(\widehat{\lambda})\left(\lambda-\widehat{\lambda}\right)\right),\tag{2.20}$$

where $N^{-1} S(\hat{\lambda})^{-1}$ is the covariance matrix for λ . The maximum likelihood value for $\theta = \langle g(x) \rangle$ is $\hat{\theta} = m(\hat{\lambda}) = \overline{g}$.

If g(x) = x, the maximum likelihood value for $\theta = \mu$ is $\hat{\mu} = m(\hat{\lambda}) = \overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ and the Gaussian-approximation covariance matrix for μ is $N^{-1} S(m^{-1}(\overline{X}))$.⁹

Marginal and conditional distributions. Here we suppose q(x) = x.

Partition the set of indices $I = \{1, ..., n\}$ into α and β , where $\alpha \cup \beta = I$ and $\alpha \cap \beta = \emptyset$. Let $x_{\alpha} = \{x_i : i \in \alpha\}, x_{\beta} = \{x_i : i \in \beta\}$, etc. The marginal distribution of x_{α} is

$$f(x_{\alpha}) = \int_{\mathcal{R}_{\beta}(x_{\alpha})} f(x) \, dx_{\beta} = \frac{e^{-\lambda_{\alpha}^{\top} x_{\alpha}}}{Z(\lambda)} \int_{\mathcal{R}_{\beta}(x_{\alpha})} e^{-\lambda_{\beta}^{\top} x_{\beta}} \, dx_{\beta} = \frac{e^{-\lambda_{\alpha}^{\top} x_{\alpha}} Z(\lambda_{\beta}, x_{\alpha})}{Z(\lambda)}, \tag{2.21}$$

where $\mathcal{R}_{\beta}(x_{\alpha})$ denotes the domain of x_{β} as a function of x_{α} and

$$Z(\lambda_{\beta}, x_{\alpha}) := \int_{\mathcal{R}_{\beta}(x_{\alpha})} e^{-\lambda_{\beta}^{\top} x_{\beta}} dx_{\beta}.$$
 (2.22)

Therefore, the distribution of x_{β} conditional on x_{α} is

$$f(x_{\beta} \mid x_{\alpha}) = \frac{f(x)}{f(x_{\alpha})} = \frac{e^{-\lambda_{\beta} \mid x_{\beta}}}{Z(\lambda_{\beta}, x_{\alpha})},$$
(2.23)

⁸Given $z = \{z_1, \ldots, z_n\}$ where $z_i > 0$ (for $i = 1, \ldots, n$) and $\sum_{i=1}^n z_i < 1$, $m^{-1}(z)$ exists and is unique. (Need to show this.)

⁹Note that $\hat{\lambda}$ maximizes the entropy of the distribution given $\mu = \overline{X}$.

which evidently is the maximum entropy distribution for x_{β} over $\mathcal{R}_{\beta}(x_{\alpha})$ subject to the conditional mean

$$\mu_{\beta|x_{\alpha}} = \int_{\mathcal{R}_{\beta}(x_{\alpha})} x_{\beta} f(x_{\beta} \mid x_{\alpha}) dx_{\beta} = -\nabla_{\lambda_{\beta}} \log \left(Z(\lambda_{\beta}, x_{\alpha}) \right).$$
(2.24)

3. MAXIMUM ENTROPY ON A SIMPLEX

First we deal with a possible source of confusion. The set \tilde{x} can be interpreted as a discrete probability measure, the entropy of which is $-\sum_{i=1}^{n+1} x_i \log(x_i)$. This is distinct from the entropy of \tilde{x} , namely $-\int_{\Delta^n} \tilde{f}(\tilde{x}) \log(\tilde{f}(\tilde{x})) d\tilde{x} = -\int_{\Delta^n} f(x) \log(f(x)) dx$, that we are interested in here.¹⁰

Computing the normalization constant. Here we specialize to $\mathcal{R} = \Delta^n$ and q(x) = x. Define

$$\zeta_b(\lambda) := \int_{\Delta_b^n} e^{-\lambda^\top x} \, dx = \left(\prod_{i=1}^n \lambda_i\right)^{-1} - \sum_{i=1}^n \left(\lambda_i \, e^{\lambda_i \, b} \prod_{\substack{j=1\\ j\neq i}}^n (\lambda_j - \lambda_i)\right)^{-1},\tag{3.1}$$

and let $\zeta(\lambda) := \zeta_1(\lambda)$. Given $\mathcal{R} = \Delta^n$, we have $Z(\lambda) = \zeta(\lambda)$ and thus

$$f(x) = \frac{e^{-\lambda^{\top} x}}{\zeta(\lambda)}.$$
(3.2)

Given this solution, the first-order series expansions for $Z(\lambda)$ and $m_i(\lambda)$ around $\lambda = 0$ are

$$Z(\lambda) = \frac{1}{n!} - \frac{\sum_{i=1}^{n} \lambda_i}{(n+1)!} + \mathcal{O}(\lambda^2)$$
(3.3)

$$m_i(\lambda) = \frac{1}{n+1} + \frac{\sum_{j=1}^n \lambda_j}{(n+1)^2 + (n+1)^3} - \frac{\lambda_i}{(n+1)(n+2)} + \mathcal{O}(\lambda^2).$$
(3.4)

Define $m_{n+1}(\lambda) := 1 - \sum_{i=1}^{n} m_i(\lambda)$. Then $\mu_{n+1} = m_{n+1}(\lambda)$. The first-order series expansion for $m_{n+1}(\lambda)$ around $\lambda = 0$ is

$$m_{n+1}(\lambda) = \frac{1}{n+1} + \frac{\sum_{i=1}^{n} \lambda_i}{(n+1)^2 + (n+1)^3} + \mathcal{O}(\lambda^2).$$
(3.5)

In fact, $\lambda_i = 0 \iff m_i(\lambda) = m_{n+1}(\lambda)$.

¹⁰Nevertheless, the relative entropy of the discret distribution can be used as a prior for \tilde{x} (just as the maximum entropy distribution can). Consider

$$\widetilde{h}(\widetilde{x}) = -\sum_{i=1}^{n+1} x_i \, \log(x_i/m_i),$$

where $\widetilde{m} = \{m_1, \ldots, m_{n+1}\}$ is some base *measure* such that $m_i > 0$ and $\sum_{i=1}^{n+1} m_i = 1$. We can write this as

$$h(x) = \tilde{h}(\tilde{x}) \Big|_{\substack{x_{n+1}=1-\sum_{i=1}^{n} x_i \\ m_{n+1}=1-\sum_{i=1}^{n} m_i}}$$

Now let $f(x) = e^{\alpha h(x)} / \int_{\Delta^n} e^{\alpha h(x)} dx$ be the distribution for x, where $\alpha \ge 0$ is a scalar parameter that controls how tightly the distribution is concentrated around its mode at x = m.

Marginal and conditional distributions. Let $s_{\alpha} = \sum_{i \in \alpha} x_i$ and let n_{β} denote the number of elements in β . Given $\mathcal{R} = \Delta^n$, it follows that $\mathcal{R}_{\beta}(x_{\alpha}) = \Delta_{1-s_{\alpha}}^{n_{\beta}}$ and therefore

$$Z(\lambda_{\beta}, x_{\alpha}) = \zeta_{1-s_{\alpha}}(\lambda_{\beta}).$$
(3.6)

Consequently (2.21) and (2.23) become

$$f(x_{\alpha}) = \frac{e^{-\lambda_{\alpha}^{\perp} x_{\alpha}} \zeta_{1-s_{\alpha}}(\lambda_{\beta})}{\zeta(\lambda)}$$
(3.7)

and

$$f(x_{\beta} \mid x_{\alpha}) = \frac{e^{-\lambda_{\beta}^{\perp} x_{\beta}}}{\zeta_{1-s_{\alpha}}(\lambda_{\beta})}.$$
(3.8)

In particular, note

$$f(x_{\beta} \mid x_{\alpha} = 0) = \frac{e^{-\lambda_{\beta}^{\perp} x_{\beta}}}{\zeta(\lambda_{\beta})},$$
(3.9)

for which the conditional mean is

$$\mu_{x_{\beta}|(x_{\alpha}=0)} = m(\lambda_{\beta}). \tag{3.10}$$

Drawing from the distribution. We can draw from the joint distribution via the Gibbs sampler, drawing cyclically from the univariate conditional distributions. Let $\beta = \{i\}$. Then

$$f(x_i \mid x_{-i}) = \frac{e^{-\lambda_i x_i}}{\zeta_{1-s_{-i}}(\{\lambda_i\})} = \frac{\lambda_i e^{-\lambda_i x_i}}{1 - e^{-\lambda_i (1-s_{-i})}}.$$
(3.11)

where $f(x_i | x_{-i}) \equiv f(x_\beta | x_\alpha)$ and $s_{-i} \equiv s_\alpha$. Define the conditional cdf

$$F(x_i \mid x_{-i}) := \int_0^{x_i} f(t \mid x_{-i}) dt = \frac{1 - e^{-\lambda_i x_i}}{1 - e^{-\lambda_i (1 - s_{-i})}}$$
(3.12)

for $x_i \leq 1 - s_{-i}$. Solving $F(x_i | x_{-i}) = u$ for x_i produces

$$x_{i} = -\lambda_{i}^{-1} \log \left(1 + (e^{-\lambda_{i} (1-s_{-i})} - 1) u \right)$$

= $(1-s_{-i}) u - \frac{1}{2} (1-s_{-i})^{2} u (1-u) \lambda_{i} + \mathcal{O}(\lambda_{i}^{2}).$ (3.13)

We can obtain independent draws from $f(x_i|x_{-i})$ via independent draws of $u \sim U(0, 1)$. By initializing the Gibbs sampler at μ , the target distribution appears to be reached in about n draws.

Alternative representations for the distribution of \tilde{x} . In addition to f(x) there n ways to represent the distribution of $\tilde{x} = \{x_1, \ldots, x_{n+1}\}$: $f(x^{(j)})$ for $j = 1, \ldots, n$, where $x^{(j)} = \{x_1^{(j)}, \ldots, x_n^{(j)}\}$ denotes the vector where x_{n+1} replaces x_j in x:

$$x_{i}^{(j)} = \begin{cases} x_{i} & i \neq j \\ x_{n+1} & i = j. \end{cases}$$
(3.14)

Note that $x_j = 1 - \sum_{i=1}^n x_i^{(j)}$. Changing variables from x to $x^{(j)}$ produces $f(x^{(j)}) = e^{-\lambda^{(j)^\top} x^{(j)}} / \zeta(\lambda^{(j)})$, where $\lambda^{(j)} = \{\lambda_1^{(j)}, \dots, \lambda_n^{(j)}\}$ and

$$\lambda_i^{(j)} = \begin{cases} \lambda_i - \lambda_j & i \neq j \\ -\lambda_j & i = j. \end{cases}$$
(3.15)

Note that $\mu_j = 1 - \sum_{i=1}^n \mu_i^{(j)}$, where $\mu^{(j)} = m(\lambda^{(j)})$. Moreover, for $i \in \{1, \ldots, n\} \setminus \{j\}$, $m(\lambda) = m(\lambda^{(j)})$.

As an example, let n = 1. Given $f(x_1) = e^{-\lambda_1 x_1} / \zeta(\lambda_1)$, then $f(x_2) = e^{\lambda_1 x_2} / \zeta(-\lambda_1)$ and $m(-\lambda_1) = 1 - m(\lambda_1)$.

We can use these alternative representations to compute the marginal distribution of $x_{n+1} = x_i^{(j)}$:

$$f(x_j^{(j)}) = \frac{e^{-\lambda_j \, x_j^{(j)}} \, \zeta_{1-x_j^{(j)}}(\lambda_{-j}^{(j)})}{\zeta(\lambda^{(j)})}.$$
(3.16)

To condition on a subset of \tilde{x} that includes x_{n+1} , first change variables to $x^{(j)}$ for some j such that $x_{\alpha}^{(j)}$ is the appropriate subset and then apply (3.8):

$$f(x_{\beta}^{(j)} \mid x_{\alpha}^{(j)}) = \frac{e^{-\lambda_{\beta}^{(j)^{+}} x_{\beta}^{(j)}}}{\zeta_{1-s_{\alpha}^{(j)}} (\lambda_{\beta}^{(j)})}.$$
(3.17)

In particular, for $x_{\alpha}^{(j)} = 0$

$$f(x_{\beta}^{(j)} \mid x_{\alpha}^{(j)} = 0) = \frac{e^{-\lambda_{\beta}^{(j)} \cdot x_{\beta}^{(j)}}}{\zeta(\lambda_{\beta}^{(j)})}.$$
(3.18)

4. Other regions

We can apply the foregoing to other regions. Consider the region of stationarity for an autoregressive process: $A(L) z_t = \varepsilon_t$, where $\varepsilon_t \sim \text{ iid } N(0, \sigma^2)$ and $A(L) = 1 - x_1 L - x_2 L^2 - \dots - x_n L^n$ is a polynomial in the lag operator. The region of stationarity is characterized by those $x \in \mathbb{R}^n$ such that all of the roots of A(L) = 0 lying outside the unit circle. For n = 1 we have $-1 < x_1 < 1$ and for n = 2 we have $x_1 + x_2 < 1$ and $-1 < x_2 < 1 + x_1$. In this latter case,

$$Z(\lambda) = \frac{e^{2\lambda_1 + \lambda_2} \left(\lambda_1 - \lambda_2\right) + e^{\lambda_2 - 2\lambda_1} \left(\lambda_1 + \lambda_2\right) - 2e^{-\lambda_2}\lambda_1}{\lambda_1 \left(\lambda_1^2 - \lambda_2^2\right)}.$$
(4.1)

With $\lambda_1 = 0$ and $\lambda_2 = -1.344$ we obtain $\mu_1 = \mu_2 = 0$.

References

Jaynes, E. T. (2003). Probability Theory: The Logic of Science. Cambridge University Press.

MARK FISHER

Federal Reserve Bank of Atlanta, Research Department, 1000 Peachtree Street N.E., Atlanta, GA $30309{-}4470$

E-mail address: mark.fisher@atl.frb.org *URL*: http://www.markfisher.net