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Still a bit incomplete.

Abstract. The doubling strategy does not produce an arbitrage in the space
of signed measures equipped with the weak* topology. (A signed measure rep-
resents a payout.) The absence of arbitrage opportunities is guaranteed by the
existence of a valuation operator (a strictly positive continuous linear functional).
Nevertheless, the sequence of signed measures generated by the doubling strategy
produces what appears to be an arbitrage from the perspective of convergence
in measure of the corresponding sequence of Radon–Nikodym derivatives taken
with respect to a fixed positive numeraire measure.

An apparent arbitrage is not what it seems: It appears to be an arbitrage from the
perspective of convergence in measure, but it is not arbitrage from the perspective
of weak-* convergence. (By contrast, an approximate arbitrage converges in the
norm topology.)

Introduction [incomplete]

In their seminal paper, Harrison and Kreps (1979, p. 400) refer to

the well known doubling strategy by which one is sure to win at
roulette: Bet $1 on red, and keep doubling your bets until red comes
out. To effect this strategy, you must be able to bet a countable
number of times, although you will only bet a finite number of times
in any particular state.

The doubling strategy is an arbitrage because each bet is costless, while the gain
after n bets converges to $1 with probability one as n goes to infinity. Side conditions
typically solve this pathology by removing the doubling strategy from the choice set.
Note, however, that in describing the situation as a pathology we have adopted the
topology of convergence in probability (the topology of almost sure convergence has
the same effect). With other topologies the doubling strategy does not necessarily
converge to $1, and restricting the strategy choice becomes unnecessary. There is
no compelling reason to adopt the topology of convergence in probability; often, in
fact, there are compelling reasons not to.
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In this paper we present a framework in which the doubling strategy converges
but not to an arbitrage. Although the framework is fairly general, we have not yet
extended our results to continuous-time stochastic processes.

Our main point is that the choice of a topology dictates which sequences of
payouts are arbitrages, a point made by Kreps (1981), who apparently did not
apply it to the case of dynamic security market models.1 We illustrate it with the
traditional example of the doubling strategy cast in the simplest possible setting:
A countable state space where the state of the world is simply the number of spins
that it takes for the first red to occur.

Our treatment of the doubling strategy is inspired by the suggestion in Gilles
and LeRoy (1997, Section 6.3) that the doubling strategy could be modeled as a
payout bubble.2 Their paper in turn is an outgrowth of Bewley (1972). Our setup
also encompasses the example in Back and Pliska (1991).3 In passing, we mention
the approach taken by Delbaen and Schachermayer (1994).

The framework for our approach is that of dual pairs. Aliprantis and Border
(1999, p. 163) write4

[W]e are led to the study of dual pairs 〈X, X∗〉 of spaces and their
associated weak topologies. . . . The weak topology on X∗ induced by
X is called the weak* topology. The most familiar example of a dual
pair is probably the pairing of functions and measures—each defines
a linear functional via the integral

∫
X f dµ, which is linear in f for

fixed µ, and linear in µ for fixed f . (The weak topology induced on
probability measures by this duality with continuous functions is the
topology of convergence in distribution that is used in the Central
Limit Theorems.) . . .

Debreu (1954) introduced dual pairs in economics in order to de-
scribe the duality between commodities and prices. According to
this interpretation, a dual pair 〈X, X∗〉 represents the commodity-
price duality, where X is the commodity space, X∗ is the price space,
and 〈x, x∗〉 is the value of the bundle x at prices x∗. . . .

In this paper, we adopt the duality of functions and measures; however we find it
convenient to let the space of measures X∗ represent the commodity space (i.e.,

1In fact, Kreps uses as an example the model we adopt here: the space of signed measures
equipped with the weak-* topology. However, the subject matter content (differentiated products
markets) of the paper he cites [Mas-Colell (1975)] that use the model is somewhat different from
what we propose. See also Jones (1984).

2Our analysis of the examples taken from Gilles and LeRoy (1997) is much simpler than what
is given there because we have reduced the set of linear functionals relative to those treated in the
model in that paper by assuming compactness of X. See below.

3Werner (1997) provides extensive treatment of the same static version of their example that we
present here. In a related static model Gilles and LeRoy (1998) discuss many of the issues raised
by Back and Pliska. Pliska (1997, Chapter 7) provides an introduction to these issues.

4We have made some minor adjustments to their notation. In particular, they use X ′ to denote
the topological dual and X∗ to denote the algebraic dual, whereas we adopt the more usual notation
where X∗ denotes the topological dual.
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the space of payouts). We equip X∗ with the weak* topology. This has the effect
(among others) of making X the topological dual of X∗.

Outline of the paper. In Section 1 we present the results from measure theory
and functional analysis that we require. To one extend or another, the results are
standard. They are presented in a somewhat abstract fashion (i.e., without reference
to the content regarding economics and finance). The reader already familiar with
such things can refer to this section for notation. Others may be forced to slog
through it, wondering how the machinery will be used.

In Section 2 we summarize the Krepsian approach to arbitrage as it bears on our
analysis, and we present the skeleton structure of an apparent arbitrage, which we
flesh out in the examples in the subsequent sections. Section 3 contains the first set
of examples. There is no (explicit) uncertainty here; the examples are intended to
allow the reader to dive into weak* convergence with as little overhead as possible.

Section 4 is the heart of the paper. In this section we provide examples in a
countable space. The doubling strategy is presented in Example 4.2. In Section 5
we embed the setting of Section 4 in a dynamic securities market, complete with
filtration, self-financing trading strategies, and an equivalent martingale measure. In
an important sense, there is nothing new in this section: We show that the analysis
of arbitrage opportunities in the static model in Section 4 carries over (with suitable
changes in terminology) to the standard analysis of arbitrage opportunities in the
dynamic setting (up to but not including doubling strategies, of course).

In Section 6 we reverse the roles of our dual pair of spaces in order to make
contact with the Back and Pliska (1991) example. In Section ?? we show how our
approach can be applied in the Black–Scholes setting. Although our approach here
is suggestive, it is not entirely satisfactory owing to the fact that it does not take
the underlying stochastic machinery seriously. Consequently, this section provides
a jumping-off point for further research into applying the ideas we present here to
continuous-time stochastic processes.

1. The duality of functions and measures

Given a compact metric space X, let C(X) := C(X,R) denote the space of con-
tinuous functions on X.5 Equip C(X) with the sup norm topology (denoted ‖ ‖∞),
where ‖f‖∞ = sup {|f(x)| : x ∈ X}. C(X) is a Banach lattice. The topological
dual space then can be identified with the space of finite signed measures M(X) on
the Borel σ-algebra BX := B(X) generated from the Borel sets of X. M(X) is a

5Every compact metrizable space can be obtained as a quotient space from the Cantor set. See
Appendix A for additional information.
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Banach lattice under the total variation norm ‖µ‖ = |µ|(X) = µ+(X) + µ−(X) for
µ ∈ M(X).6,7

We can equip M(X) with the weak* topology (denoted w∗), in which case its
topological dual space is C(X). The pair of spaces 〈C(X),M(X)〉 form a dual pair
with the duality8

〈f, µ〉 =
∫

X
f dµ,

with f ∈ C(X) and µ ∈ M(X). Given µ, ν ∈ M(X), the separation property of a
duality implies

µ = ν ⇐⇒ 〈f, µ〉 = 〈f, ν〉 ∀ f ∈ C(X). (1.1)

Consider a sequence {µn}∞n=1 ⊂ M(X) and an element µ ∈ M(X). Weak-* conver-
gence is characterized as follows:

µn
w∗−−→ µ ⇐⇒ 〈f, µn〉 → 〈f, µ〉 ∀ f ∈ C(X).

Strong convergence (i.e., convergence in norm) implies weak-* convergence:

‖µn − µ‖ → 0 =⇒ µn
w∗−−→ µ.

A sequence {µn}∞n=1 ⊂ M(X) is norm-bounded if supn∈N ‖µn‖ < ∞. The
unit ball in M(X) is weak-* compact (Alaoglu’s Theorem), and consequently every
norm-bounded sequence of signed measures has weak-* limit points in M(X).

The unit ball in M(X) is weak-* metrizable owing to the separability of C(X).
Let {fj}∞j=1 be a dense subset of C(X). Then weak-* convergence need only be
checked with respect to the elements of {fj}∞j=1. In particular,

µn
w∗−−→ µ ⇐⇒ 〈fj , µn〉 → 〈fj , µ〉 ∀ j ∈ N.

Here is a metric compatible with the weak-* topology:

d(µ1, µ2) =
∞∑

j=1

2−j ∧ |〈fj , µ1〉 − 〈fj , µ2〉|.

Given a norm-bounded sequence {µn}∞n=1,

µn
w∗−−→ µ ⇐⇒ d(µn, µ) → 0.

6The lattice operations on M(X) are given by

µ ∨ ν(A) = sup{µ(B) + ν(A \B) : B ∈ B(X) and B ⊂ A}
µ ∧ ν(A) = inf{µ(B) + ν(A \B) : B ∈ B(X) and B ⊂ A}.

7Moreover, M(X) is an AL-space. An AL-space is a norm complete L-space, which is a normed
Riesz space with an L-norm. An L-norm satisfies the following condition: x, y > 0 implies ‖x+y‖ =
‖x‖+ ‖y‖.

8The dual pair 〈C(X), M(X)〉 is a Riesz pair (but not a symmetric Riesz pair). As such, a
positive vector f ∈ C(X)+ is strictly positive, written f À 0, if f acts as a strictly positive linear
functional on M(X) when considered as a member of M(X)∼, the order dual of M(X). This
requires f(x) > 0 for all x ∈ X.
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Given A ⊂ M(X), the annihilator of A is defined by

A⊥ := {f ∈ C(X) : 〈f, µ〉 = 0 ∀µ ∈ A}. (1.2)

Theorem 5.96 in Aliprantis and Border (1999) asserts that if A is a subspace of
M(X), then the following are equivalent: (i) A⊥ = {0}, (ii) A separates the points
of C(X), and (iii) A is weak-* dense in M(X).

Let δx denote the point mass located at x ∈ X, where

δx(A) =

{
1 x ∈ A

0 x 6∈ A
∀A ∈ B(X).

Note ‖δx‖ = |δx|(X) = δx(X) = 1. Let 1A denote the characteristic function for
A ∈ B(X) where

1A(x) =

{
1 x ∈ A

0 x 6∈ A
∀x ∈ X.

Let 1 := 1X and 0 := 1∅.
Since X is compact metrizable, it is separable. Therefore, there is a countable

dense set {xn}∞n=1 ⊂ X. Since ({δxn}∞n=1)
⊥ = {0}, {δxn}∞n=1 is dense in M(X).

Thus finite linear combinations of {δxn}∞n=1 can be used to approximate any el-
ement of M(X) arbitrarily well. For example, N is dense in N∞ (its one-point
compactification). Therefore, the set {δx}x∈N can be used to approximate δ∞ ar-
bitrarily well. As another example, let Q[0,1] denote the rationals in [0, 1]. Since
Q[0,1] is dense in [0, 1], point masses on Q[0,1] can be used to approximate Lebesgue
measure on [0, 1] arbitrarily well.

Order structure. The positive cone of M(X) is

M(X)+ = {µ ∈ M(X) : µ(A) > 0 ∀A ∈ B(X)}.
The strongly positive cone is M(X)++ = M(X) \ {0}. The positive cone of C(X)
is

C(X)+ = {f ∈ C(X) : 〈f, µ〉 > 0 µ ∈ M(X)+}
and its strongly positive cone is C(X)++ = C(X)+ \ {0}. We say µ ∈ M(X)++

is strictly positive if 〈f, µ〉 > 0 for all f ∈ C(X)++ and f ∈ C(X)++ is strictly
positive if 〈f, µ〉 > 0 for all µ ∈ M(X)++.

Numeraire measure. Fix a positive measure λ ∈ M(X). By the Lebesgue decom-
position, every signed measure µ ∈ M(X) has a unique representation µ = µa + µs

where µa ¿ λ (i.e., µa is absolutely continuous with respect to λ) and µs ⊥ λ (i.e.,
µs and λ are mutually singular).9 In fact, λ induces a decomposition of M(X) into
the direct sum of projection bands: Bλ ⊕Bd

λ = M(X), where

Bλ = {µ ∈ M(X) : µ ¿ λ} and Bd
λ = {µ ∈ M(X) : µ ⊥ λ}.

9In a Riesz space each pair of vectors has a supremum and and infimum: x∨ y = sup{x, y} and
x ∧ y = inf{x, y}. In particular, x+ = x ∨ 0, x− = (−x) ∨ 0; in addition, |x| = x+ + x−. Vectors
x and y are disjoint or orthogonal, written x ⊥ y, if |x| ∧ |y| = 0. From Lemma 9.56 in Aliprantis
and Border (1999) we have the following: Given µ, ν ∈ M(X), µ ⊥ ν if and only if there exists
some A ∈ B(X) such that |µ|(A) = |ν|(Ac) = 0.
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The bands Bλ and Bd
λ are both linear subspaces of M(X) and they are disjoint

complements: If µ ∈ Bλ and ν ∈ Bd
λ, then µ ⊥ ν.

Define L1(λ) := L1(X, B(X), λ). The norm of z ∈ L1(λ) is ‖z‖λ
1 =

∫
X |z| dλ. Let

‖ ‖λ
1 denote the norm topology. Note C(X) ⊂ L1(λ), since ‖f‖λ

1 =
∫
X |f | dλ < ∞.

Consider the positive linear operator Tλ : Bλ → L1(λ), where

Tλ(µ) = dµ/dλ. (1.3)

Note ‖Tλ(µ)‖λ
1 = ‖µ‖. The inverse operator T−1

λ : L1(λ) → Bλ is defined by
T−1

λ (z)(B) =
∫
B z dλ for all B ∈ B(X). Since Tλ is a lattice isometry, the Banach

lattices Bλ and L1(λ) are identical from the point of view of Riesz spaces.
The support of a positive measure λ (if it exists10) is a closed set (denoted suppλ)

satisfying (i) λ
(
(suppλ)c

)
= 0 and (ii) if A is open and A ∩ suppλ 6= ∅, then

λ(A∩ suppλ) > 0. For our purposes, what is important is this: If suppλ = X, then
B⊥

λ = {0} and therefore Bλ is weak-* dense in M(X). If Bλ is dense in M(X), then
any element of M(X) can be approximated arbitrarily well by elements in Bλ, all
of which have densities with respect to λ. Consequently, we will call λ a numeraire
measure if 0 6 λ ∈ M(X) and suppλ = X. It follows that if λ is a numeriare
measure, then Bλ = M(X) in the weak-* topology. [Need to show that any weak-*
continuous linear functional on Bλ can be extended to M(X).]

Natural measure. Fix a positive measure ϕ ∈ Bλ for which λ ¿ ϕ. In other words,
ϕ is equivalent to λ. Since ϕ and λ are equivalent, Bϕ = Bλ. Then ξ := Tλ(ϕ) =
dϕ/dλ is the density of the payout ϕ in terms of the numeraire measure. Define
π := Tϕ(λ) = dλ/dϕ = ξ−1. Note Tλ(µ) Tϕ(λ) = (dµ/dλ) (dλ/dϕ) = dµ/dϕ =
Tϕ(µ). Then for µ ∈ Bλ,

〈1, µ〉 =
∫

X
z π dϕ,

where z = Tλ(µ). If ϕ(X) = 1, then
∫
X z π dϕ = Eϕ[z π]. If, in addition, ϕ is

the natural measure (also known as the physical measure), then we say π is the
state-price deflator.

Reference measure. Define L1(η) := L1(X, B(X), η) where η is a positive σ-finite
Borel measure η such that λ ¿ η. (Note η(X) < ∞ =⇒ η ∈ M(X).) We refer
to η as the reference measure. (In our examples, η is either the counting measure
or the Borel measure on the real line.) We refer to G := dλ/dη = Tη(λ) ∈ L1(η)
as the pricing function. Note λ = T−1

η (G) ∈ M(X). In addition, z ∈ L1(λ) ⇐⇒
z G ∈ L1(η) and

∫
X z dλ =

∫
X z G dη. Given η, choosing G ∈ L1(η) is equivalent to

choosing λ ∈ M(X).
Finally, let F = dϕ/dη. Then

Eϕ[z π] =
∫

X
z π F dη =

∫

X

(
dµ

dλ

)(
dλ

dϕ

)(
dϕ

dη

)
dη =

∫

X
dµ,

where µ, λ, ϕ, and η are all Borel measures on B(X) and (with the possible exception
of η) all are in M(X).

10Given the separability of X, the support of 0 ≤ λ ∈ M(X) exists.
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Convergence in L1(λ) and uniform integrability. Given a sequence {zn}∞n=1

where zn ∈ L1(λ) and z ∈ L1(λ). Consider the following modes of convergence.
First, convergence in the L1 norm:

zn
‖ ‖λ

1−−→ z ⇐⇒ ‖zn − z‖λ
1 → 0.

We can restate the norm convergence of functions in terms of the norm convergence
of measures: Given a sequence {µn}n∈N ⊂ Bλ and µ ∈ Bλ,

‖µn − µ‖ → 0 ⇐⇒ ‖Tλ(µn − µ)‖λ
1 → 0.

Second, convergence λ-almost everywhere:

zn
λ-a.e.−−−→ z ⇐⇒ zn(x)− z(x) → 0 ∀x ∈ X \ E where λ(E) = 0.

Third, convergence in λ-measure:

zn
λ−→ z ⇐⇒ λ({x ∈ X : |zn(x)− z(x)| > ε}) → 0 ∀ ε > 0.

Relations among the modes of convergence:

zn
λ-a.e.−−−→ z =⇒ zn

λ−→ z

and

zn
‖ ‖λ

1−−→ z =⇒ (i) zn
λ−→ z and (ii) z is the unique λ-a.e. limit point.

Theorem 1. Fix 0 6 λ ∈ M(X). Given {µn}∞n=1 ⊂ Bλ and µ = µa + µs, where

µa ∈ Bλ and µs ∈ Bd
λ. Then µn

w∗−−→ µ =⇒ Tλ(µn) λ−→ Tλ(µa).

Proof. Christian will supply proof. ¤
The sequence {zn}n∈N ⊂ L1(λ) is uniformly integrable (UI) if

lim
α→∞ sup

n∈N

∫

|zn|≥α
|zn| dλ = 0.

Theorem 2. Fix 0 6 λ ∈ M(X). Given the sequence {µn}n∈N ⊂ Bλ, the sequence
{Tλ(µn)}n∈N is UI if and only if

sup
n∈N

‖µn‖ < ∞ and lim
λ(A)→0

sup
n∈N

|µn|(A) = 0.

Doob (1994) describes the second condition as uniform absolute continuity of the
sequence of measures {µn}n∈N.

Proof. See Doob (1994, p. 94). ¤

Theorem 3. Fix 0 6 λ ∈ M(X). Given {zn}∞n=1 ⊂ L1(λ). If zn
λ−→ z, then

‖zn − z‖λ
1 → 0 if and only if {zn}∞n=1 is UI.

Proof. See Doob (1994, p. 95). ¤
Theorem 4 (Dunford–Pettis). A subset of L1(λ) is UI if and only if it is relatively
weakly compact.

The following theorem is implied by the Dunford–Pettis Theorem.
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Theorem 5. Fix 0 6 λ ∈ M(X). Given S := {µn}∞n=1 ⊂ Bλ. Let S denote the
weak-* closure of S in M(X). Then {Tλ(µn)}∞n=1 is UI if and only if S ⊂ Bλ.

Proof. To be supplied. ¤
Corollary 1. Fix 0 6 λ ∈ M(X). Given {µn}∞n=1 ⊂ Bλ and µ ∈ Bλ. Then

µn
w∗−−→ µ ⇐⇒ µn

‖ ‖−→ µ.

In other words, µn
w∗−−→ µ ⇐⇒ Tλ(µn)

‖ ‖λ
1−−→ Tλ(µ).

Filtration and stochastic processes. In this section, we use a filtration to gen-
erate a sequence in L1(λ) from a signed measure µ ∈ M(X).

Let {Fi}∞i=1 be a filtration, where F1 = {∅, X}, Fn ⊂ Fn+1 for all n ∈ N, and
F∞ = σ(∪∞i=1Fi). In addition, assume F∞ = B(X). Fix a σ-finite measure space
(X, B(X), λ). Then (X,B(X), {Fi}∞i=1, λ) is a filtered measure space.

Given µ ∈ M(X), form the Lesbegue decomposition with respect to λ: µ =
µa + µs and define z := dµa/dλ. Define the restrictions of µ and λ to Fn:

µ̂n(A) = µ(A) and λn(A) = λ(A) ∀A ∈ Fn.

Now suppose µ̂n ¿ λn for all n ∈ N (i.e., the λ-null sets not shared by µ are only
in B(X) and not in any Fn). Define zn := dµ̂n/dλn. Note {zn}∞n=1 is adapted to
the filtration. Define the ‘conditional’ measure µn via11

µn(A) := T−1
λ (zn).

It can be shown that µn
w∗−−→ µ. In other words,

T−1
λ (zn) w∗−−→ µ.

Also note, ‖zn‖ =
∫
X |zn| dλ =

∫
X |zn| dλn = ‖µ̂n‖ = ‖µ‖. Thus {zn}∞n=1 is norm

bounded. Moreover,
∫
X zn dλn = µ̂n(X) = µ(X) for all n ∈ N. It can be shown

that zn
λ-a.e.−−−→ z. Note, however,

∫
X z dλ = µ(X)−µs(X) 6= µ(X) unless µs(X) = 0.

Let ϕn denote the restriction of ϕ to Fn. Note ϕn(X) = ϕ(X). Define πn =
dλn/dϕn. Note {πn}∞n=1 is adapted to the filtration. If ϕ(X) = 1, then {zn πn}∞n=1

is a ϕ-martingale. In addition, zn
ϕ-a.e.−−−→ z.

2. Arbitrage

Our treatment of arbitrage follows Kreps (1981) and Clark (1993, 2000, 2002).12

Fix a topological space of payouts (S, τ) and a cone K. In this paper, S is a Banach
lattice and K = S+ = {x ∈ S : x > 0}, the positive cone of S. Let S++ = S+ \ {0}
denote the strongly positive cone (i.e., the positive cone with the origin deleted).13

11In shorthand notation we have dµn = dµ̂n
dλn

dλ.
12Which see for omitted details.
13For any subspace E in S, let E+ := E ∩ S+ denote the positive cone of E and let E++ :=

E ∩ S++ denote the strongly positive cone of E. The topological dual vector space E∗ consists of
all continuous linear functionals on E. Its positive cone is given by

(E∗)+ := {p ∈ S∗ : p(x) > 0 ∀x ∈ E+},
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LetM ⊂ S denote the space of marketed claims and letM denote the τ -closure ofM.
The prices of marketed contingent claims are given by a linear functional π :M→ R,
which embodies the law of one price. We assume there exists m0 ∈M such that m0

is strictly positive (relative to S) and that π(m0) > 0. For some purposes it may
be convenient to posit a set of marketed securities M0 and to define the space of
marketed claims as M = sp(M0), where sp(M0) is the linear span of M0.

A valuation operator V is a continuous strictly positive linear functional on S
that extends π; i.e., V (m) = π(m) for every m ∈M. Let P denote the collection of
all positive linear extensions p : S → R of π. We say that a contingent claim x ∈ S
is priced by arbitrage whenever p(x) has the same value for every p ∈ P.

Define the feasible set F := {m ∈ M : π(m) = 0}. Let F denote the closure of
F . An arbitrage is an element of S++ ∩F . An approximate arbitrage is an element
of S++ ∩ F . We can characterize the absence of arbitrage opportunities and the
absence of approximate arbitrage opportunities as follows:

S++ ∩ F = ∅ (NA)

and
S++ ∩ F = ∅. (NAA)

(NA) holds if and only if π is strictly positive. It is of some interest to note that when
M is closed, F = F and consequently (NAA) is equivalent to (NA). In particular,
if M = S, then π is a valuation operator.14

The following theorem combines Theorems 1–3 from Clark (2002).

Theorem 6. Suppose S is a separable Banach lattice such that the norm is order-
continuous and M is a sublattice of S.

(1) Then there exists a valuation operator if and only if (NAA) holds.
(2) Then there exists a unique valuation operator if and only if (NAA) holds

and M = S.
(3) If (NAA) holds, then a contingent claim x ∈ S is priced by arbitrage if and

only if x ∈M.

Clark notes the theorem applies to inseparable Lp spaces (for 1 6 p < ∞), so
separability per se is not essential.

and its strongly positive cone (E∗)++ := {p ∈ (E∗)+ : p 6= 0}. We say a vector x ∈ E++ is strictly
positive (relative to E) provided that p(x) > 0 for every p ∈ (E∗)++, and we say that a linear
functional p ∈ (E∗)++ is strictly positive if provided that p(x) > 0 for every x ∈ E++.

Letting (S, τ) = (M(X), w∗), we have

M(X)+ = {µ ∈ M(X) : µ(A) > 0 ∀A ∈ B(X)}
C(X)+ = {f ∈ C(X) : 〈f, µ〉 > 0 ∀µ ∈ M(X)+}.

14For comparison, consider

S++ ∩ F̂ = ∅, (NFL)

where F̂ := (S+ − F ) ∩ (F − S+). Clark (2002, Lemma A) proves that (NFL) holds if and only if
there are no free lunches in the sense of Kreps (1981). In addition, Clark (2002, Lemma B) proves

the following: Suppose S is a Banach lattice such that the norm is order continuous and M is a

sublattice of S. If (NAA) holds, then F̂ = F .
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Since every AL-space has an order-continuous norm,15 the preceding theorem
applies to (M(X), ‖ ‖). I suspect the theorem also applies to (M(X), w∗). The
assumption of an order-continuous norm is equivalent to the assumption that the
norm topology is order-continuous. Therefore, what is (probably) required in our
setting is that the weak-* topology is order-continuous (which I’m guessing is true
because norm convergence implies weak-* convergence).

Spaces of payouts. Given 0 6 λ ∈ M(X) where suppλ = X. The following are
equivalent:

(1) z 7→ ∫
X z dλ is a valuation operator on (L1(λ), ‖ ‖λ

1).
(2) µ 7→ ∫

X dµ = 〈1, µ〉 is a valuation operator on (Bλ, ‖ ‖).
(3) µ 7→ ∫

X dµ = 〈1, µ〉 is a valuation operator on (M(X), w∗).

Anatomy of an apparent arbitrage. Let the space of payouts be (M(X), w∗)
and let the valuation operator be given by µ 7→ 〈1, µ〉. Fix a positive measure
λ ∈ M(X) for which suppλ = X. Take as given a sequence {µn}∞n=1 ⊂ Bλ where

µn(X) = 0 for all n ∈ N and for which µn
w∗−−→ µ = µa + µs, where µa ∈ Bλ and

µs ∈ Bd
λ. By Theorem 1, Tλ(µn) λ−→ Tλ(µa). It follows from weak-* convergence

that µ(X) = 0 and thus
∫
X Tλ(µa) dλ = −µs(X). If µs(X) < 0 we have an apparent

arbitrage opportunity, while if µs(X) > 0 we have an apparent suicide strategy.16

3. Intervals on the real line

In this section we illustrate weak* convergence and apparent arbitrages in the
spaces X = [0, a] where a ∈ (0,∞]. In all cases, the reference measure η is the Borel
measure, denoted Bor.17

Example 3.1. This example shows that a sequence of ‘lump-sum’ payouts can
converge to a ‘lump-sum’ payout. Let X = [0, 1]. Given a sequence of distinct
points {xn}∞n=1 ⊂ [0, 1] \ {x} such that xn → x ∈ [0, 1]. The sequence of point
masses {δxn}∞n=1 does not converge in norm, since ‖δxn − δx‖ = 2 for all n ∈ N.
Nevertheless, the sequence does converge in the weak* topology:

〈f, δxn〉 = f(xn) −→
n

f(x) = 〈f, δx〉 ∀ f ∈ C([0, 1]).

Example 3.2. This example illustrates how ‘lump-sum’ payouts can be used to
approximate a ‘flow’ payout. Let X = [0, 1] and let λ = Bor. For each n ∈ N,
partition [0, 1] into n intervals of equal length. Define

λ̂n :=
1
n

n∑

i=1

δ 2 i−1
2 n

.

15Aliprantis and Border (1999, p. 313).
16Note, if µs 6= 0 (even if µs(X) = 0), then ‖µn − µ‖ 6→ 0.
17Lebesgue measure is the completion of the Borel measure (which is defined on the Borel

σ-algebra).
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Note λ̂n
w∗−−→ λ since

∫

[0,1]
f dλ̂n =

1
n

n∑

i=0

f

(
2 i− 1

2n

)
−→
n

∫ 1

0
f(x) dx = 〈f, λ〉 ∀ f ∈ C([0, 1]).

Example 3.3. This example illustrates an apparent arbitrage. Let X = [0, 1] and
let λ = Bor. Let µ = λ − δ0, so that µ(X) = 0 and ‖µ‖ = 2. In addition, µa = λ,
µs = −δ0, z = dµa/dλ = 1 (λ-a.e.), and

∫
X z dλ = 1.

Define µn via µn(A) =
∫
A zn dλ for all A ∈ B(X), where

zn(x) :=

{
1− 2n−1 x ∈ [0, 21−n]
1 x ∈ (21−n, 1].

(See Figure 1.) Note µn
w∗−−→ µ and zn

λ-a.e.−−−→ z. Moreover, µn(X) =
∫
X zn dλ = 0

for all n ∈ N. Since
∫
X z dλ = 1, there is an apparent arbitrage.

Consider the image measure (i.e., the distribution function)

Fn(x) = λ({y ∈ [0, 1] : zn(y) ≤ x}) =





0 x < 1− 2n−1

21−n 1− 2n−1 ≤ x < 1
1 1 ≤ x.

(See Figure 1.) Note∫

R
f dFn = 21−n f(1− 2n−1) + (1− 21−n) f(1) ∀ f ∈ Cb(R),

where Cb(R) is the space of continuous bounded functions on R. Thus,∫

R
f dFn → f(1) =

∫

R
f dF ∀ f ∈ Cb(R),

where

F (x) =

{
0 x < 1
1 x ≥ 1.

Therefore, the sequence of image measures converges in distribution to 1. This sim-
ply reflects convergence in measure and does not contradict the weak* convergence
of of {Tλ(zn)}∞n=1.

Example 3.4. (Miller–Modigliani). This example is adapted from the “zero”-
dividend example in Gilles and LeRoy (1997).

Consider a firm that starts with one unit of capital that generates earnings at
rate r > 0. Suppose the firm pays out a constant fraction γ ∈ (0, 1) of earnings
as dividends. Let zγ(t) denote the rate of flow of dividends at time t and let s(t)
denote firm’s stock of capital at time t. Then zγ(t) = γ r s(t). The firm acquires
additional capital with its retained earnings, and so its capital evolves according to
the ordinary differential equation (ODE) s′(t) = (1 − γ) r s(t) subject to s(0) = 1.
The solution to the ODE is s(t) = e(1−γ) r t and therefore zγ(t) = γ r e(1−γ) r t.

Let X = [0,∞] and let η = Bor. Let G(t) = e−r t be the pricing function,
so the numeraire measure is characterized by λ(dt) = G(t) η(dt) = G(t) dt. Note
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Figure 1. z3(x) and F3(x).

λ(X) =
∫∞
0 e−r t dt = 1/r. Note zγ ∈ L1(λ) since

∫
X |zγ(t)|λ(dt) < ∞. Define µγ :=

T−1
λ (zγ). The density of µγ with respect to Lebesgue measure is given by wγ(t) :=

γ r e−γ r t = zγ(t) G(t). The value of the firm is independent of the dividend–payout
ratio:

µγ(X) =
∫ ∞

0
µγ(dt) =

∫ ∞

0
γ r e−γ r t dt = 1.

Consider what happens when the dividend–payout ratio goes to zero. First, note
that all of the firm’s value is attributable to dividends in the tail as the dividend–
payout ratio goes to zero:

lim
γ↓0

µγ([T,∞]) = 1 for every finite T .

Given a sequence {γn}∞n=1 ⊂ (0, 1) where γn → 0, we show that µγn

w∗−−→ δ∞. Note

〈f, µγ〉 =
∫ ∞

0
f(t) dµγ(dt) =

∫ ∞

0
f(t) wγ(t) dt.
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Thus,
〈f, µγn〉 −→n f(∞) = 〈f, δ∞〉 ∀ f ∈ C([0,∞]),

where f(∞) := limt→∞ f(t). Since µγ
w∗−−→ δ∞ and zγ(t) λ−a.e.−−−−→ 0, buying shares in

the ‘zero’-dividend firm is an apparent suicide strategy.

4. Countable state space

In this section, let X = N∞ := N∪ {∞}.18 N∞ is the one-point compactification
of N.19 Let en denote the n-th unit coordinate vector; i.e., the sequence whose n-th
term is one and every other term is zero and let ẽn :=

∑∞
i=n+1 ei. Note ẽ0 = 1N

and ẽ0 + e∞ = 1 = 1N∞ .
Given a sequence {f(i)}∞i=1, define Lim[f ] := limi→∞ f(i). Note that f ∈

C(N∞) ⇐⇒ Lim[f ] exists and is finite and f(∞) = Lim[f ]. In addition, note
that µ ∈ M(N∞) ⇐⇒ µ =

∑∞
i=1 mi δi + m∞ δ∞, subject to

‖µ‖ = |µ|(N∞) =
∑

i∈N∞
|mi| < ∞.

Thus, µ({i}) = mi for all i ∈ N∞. The duality for 〈C(N∞),M(N∞)〉 is20

〈f, µ〉 =
∫

X
f dµ =

∑

i∈N∞
f(i) mi =

∑

i∈N
f(i) mi + Lim[f ] m∞.

Define I(µ) := {i ∈ N∞ : µ({i}) 6= 0}. Then µ′ ¿ µ ⇐⇒ I(µ′) ⊆ I(µ). If µ′ ¿ µ,
then

dµ′

dµ
=

∑

i∈I(µ)

(
m′

i

mi

)
ei.

Let λ :=
∑∞

i=1 βi δi, where βn > 0 for n ∈ N and β :=
∑∞

i=1 βi < ∞.21 Define
β̃n :=

∑∞
n+1 βi. Note λ(N∞) = β < ∞ and λ({∞}) = 0. The support of λ is N∞.22

Define L1(λ) := L1(N∞, B(N∞), λ).
For any µ ∈ M(N∞), we have µ = µa + µs where µa =

∑∞
i=1 mi δi ¿ λ and

µs = m∞ δ∞ ⊥ λ. For µ ∈ Bλ, Tλ(µ) = dµ/dλ =
∑∞

i=1(mi/βi) ei ∈ L1(λ).23 Given
z =

∑∞
i=1 z(i) ei ∈ L1(λ), T−1

λ (z) =
∑∞

i=1 z(i) βi δi.24

18In Appendix A we show how to obtain N∞ as a quotient space of the Cantor space of infinite
sequences of zeros and ones.

19The open sets of N∞ are the open sets of N in the discrete topology and sets of the form
A ∪ {∞} where A is an open subset of N and N \A is compact. Thus A is an infinite set.

20C(N∞) is also known as c and M(N∞) is also known as `1 ⊕ R. See Aliprantis and Border
(1999, Section 15.4).

21The reference measure is the counting measure η =
∑∞

i=1 δi + δ∞ and (assuming λ is the

numeraire measure) the pricing function is G = dλ/dη =
∑∞

i=1 βi ei. Also note, dδn/dη = en.
22N∞ is closed, its complement ∅ has λ-measure zero, and {∞} is not open (so the λ-measure

of N∞ ∩ {∞} = {∞} need not be positive).
23Tλ(µ)(∞) is arbitrary since λ({∞}) = 0. We have set it to zero for convenience.
24T−1

λ (z) does not depend on z(∞), which we have set to zero for convenience.



14 MARK FISHER AND CHRISTIAN GILLES

Fix the natural probability measure ϕ :=
∑∞

i=1 αi δi, where αi > 0 for all n ∈ N
and

∑∞
i=1 αi = 1. Let α̃n :=

∑∞
i=n+1 αi. Note ϕ is equivalent to λ (ϕ ¿ λ and

λ ¿ ϕ). In particular, Bϕ = Bλ, the ϕ-null sets are ∅ and {∞}, and suppϕ = N∞.
Note (N∞,B(N∞), ϕ) is a probability space. Define L1(ϕ) := L1(N∞, B(N∞), ϕ).
For µ ∈ Bϕ, Tϕ(µ) = dµ/dϕ =

∑∞
i=1(mi/αi) ei. Let π = Tϕ(λ) = dλ/dϕ =∑∞

i=1(βi/αi) ei. For z ∈ L1(ϕ), T−1
ϕ (z) =

∑∞
i=1 αi z(i) δi and Eϕ[z] =

∑∞
i=1 z(i) αi.

Note Eϕ[π] =
∑∞

i=1 π(i) αi = β.
It is convenient to define

δ̃n := β̃−1
n

∞∑

i=n+1

βi δi. (4.1)

Note ‖δ̃n‖ = δ̃n(N∞) = β̃−1
n

∑∞
i=n+1 βi = 1.

Example 4.1. We have δn
w∗−−→ δ∞ since

〈f, δn〉 = f(n) −→
n

Lim[f ] = 〈f, δ∞〉 ∀ f ∈ C(N∞).

Remarks. The density of δn with respect to λ is Tλ(δn) = β−1
n en for n ∈ N. Note

limn→∞ β−1
n = ∞. Since δ∞ ∈ Bd

λ, {Tλ(δn)}∞n=1 is not uniformly integrable. Also

note Tλ(δn) λ-a.e.−−−→ 0.

Interpretation. The very-long discount (VLD) bond is the weak-* limit of a sequence
of zero-coupon bonds. (This example is adapted from Gilles and LeRoy (1997).)

We interpret βn as the discount factor: βn = (1+r)−n, where r > 0 is the interest
rate.25 The payout to a zero-coupon bond that pays one unit when it matures at
time n is en and its value is βn. The payout to a zero-coupon bond that pays
(1 + r)n when it matures at time n is β−1

n en and its value is 1. We can identify the
payout to this bond with the measure δn = T−1

λ (β−1
n en). The payout to the VLD

bond is δ∞ and its value is δ∞(N∞) = 1.
The payout to the VLD bond can be replicated sequentially as follows. Invest

$1 at time zero in one-period debt and rollover the investment each period. The
reverse transaction (a Ponzi scheme of sorts: borrow $1 at time zero and rollover
the outstanding debt each period) is an apparent arbitrage.

Example 4.2. We have δ̃n
w∗−−→ δ∞ since

〈f, δ̃n〉 = β̃−1
n

∞∑

i=n+1

βi f(i) −→
n

Lim[f ] = 〈f, δ∞〉 ∀ f ∈ C(N∞).

Remarks. The density of δ̃n with respect to λ is

Tλ(δ̃n) = β̃−1
n ẽn. (4.2)

Note limn→∞ β̃−1
n = ∞. Since δ∞ ∈ Bd

λ, {Tλ(δn)}∞n=1 is not uniformly integrable.

Also note Tλ(δ̃n) λ-a.e.−−−→ 0.

25Note β = 1/r. If r = 0, then λ(N∞) = ∞ and λ would be σ-finite but not finite.
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Interpretation. Let the state of the world be characterized by the first occurrence
of red on a roulette wheel. The suicide strategy is the weak-* limit of a sequence
of normalized fair bets on black.

We interpret βn as the probability that the first red occurs on the n-th spin. We
assume β = 1. The price of a fair bet that pays one unit if the first red occurs
on the n-th spin equals the probability, βn.26 The payout of this bet is en. It
is convenient to normalize fair bets so that their cost is $1. Thus the payout to
a normalized fair bet that the first red occurs on the n-th spin is β−1

n en. (For
example, if βn = 2−n, then β−1

n = 2n.)
The payout to a normalized fair bet that the first n spins are all black is β̃−1

n ẽn.
(For example, if βn = 2−n, then β̃−1

n = 2n.) We can identify this payout with the
measure δ̃n = T−1

λ (β̃−1
n ẽn). The sequence of payouts {δ̃n}∞n=1 converges to δ∞,

which is the payout to a normalized fair bet that the first red never occurs. This
payout does not have a density with respect to λ; nevertheless, the payout can be
approximated arbitrarily well with payouts that do have densities. The bet can be
executed sequentially by first betting $1 on black and continuing to bet any and
all winnings on black until red occurs.

The doubling strategy. The doubling strategy involves betting on red and doubling
the bet each time black occurs. The first bet of $1 is financed by borrowing, as are
all subsequent required bets. When red occurs, the loans are repaid, after which
$1 remains.

Formally, we can model the doubling strategy as follows: Define µn := λ − δ̃n.
Note µn(N∞) = 0. The payout to the doubling strategy (in terms of the numeraire)
after the n-th spin is Tλ(µn) = 1N − β̃−1

n ẽn. For example, if βn = 2−n, then
Tλ(µn) =

∑n
i=1 ei + (1− 2n) ẽn. Finally, we have µn

w∗−−→ λ− δ∞ 6∈ M(X)++.
Below we present a filtration that allows us to put the suicide and doubling

strategies into a fully dynamic setting.

Convergence in distribution of the suicide strategy. Given a sequence of
random variables defined on N∞, we can examine the corresponding sequence of
image measures on the real line and see to what it converges in distribution. We
show that the suicide strategy converges in distribution to zero.

The distribution function for Tλ(δ̃n) = β̃−1
n ẽn is

Fn(x) := λ({i : Tλ(δ̃n)(i) 6 x}) =





0 x < 0
1− β̃n 0 6 x < β̃−1

n

1 β̃−1
n 6 x.

Note, ∫

R
f dFn = (1− β̃n) f(0) + β̃n f(β̃−1

n ) ∀f ∈ Cb(R),

26Here we are assuming βn = αn, where αn is physical probability and βn is the equivalent
risk-neutral probability.
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where Cb(R) is the space of continuous bounded functions on R. Also note,

lim
n→∞ β̃n = 0.

Therefore, ∫

R
f dFn → f(0) =

∫

R
f dF ∀ f ∈ Cb(R),

where

F (x) =

{
0 x < 0
1 x ≥ 0

is the distribution for a random variable that is identically zero. In other words, we
find that the sequence of random variables converges in distribution to the constant
zero. This does not contradict our earlier finding that the suicide strategy does
not weak* converge to zero. Although both sequences involve weak convergence in
the generic sense, the spaces of measures (and of test functions) are different. On
the one hand we have {δ̃n}∞n=1, a sequence of meausres on N∞, while on the other
hand we have {Fn}∞n=1, a sequence of distribution functions for Lebesgue–Stieltjes
measures on the real line.

Representations. Here we consider a variety of representations for the contin-
uous linear functional µ 7→ µ(X). In particular, is there an equivalent measure
representation?

For µ ∈ Bλ = Bϕ, we have

µ(X) =
∫

X
dµ =

∫

X

(
dµ

dλ

)
dλ =

∫

X

(
dµ

dλ

)(
dλ

dϕ

)
dϕ = Eϕ

[(
dµ

dλ

)
π

]
.

As long as Bϕ 6= M(X) (i.e., as long as Bd
λ 6= ∅), there can be no measure that

is equivalent to the natural measure ϕ that allows us to compute all values as an
expectation.

In this simple setting where X = N∞, it is possible to find a numeraire measure
for which there are no nonempty null sets.27 For example, define

ζ := λ + a δ∞,

where a > 0. Note Bζ = M(X) and we therefore can identify M(X) with L1(ζ).
Of course, ζ is not equivalent to either ϕ or λ. Then for every µ ∈ M(X) we can
write

µ(X) =
∫

X

(
dµ

dζ

)
dζ.

Now suppose β < 1 and a = 1 − β. In this case, ζ = λ + (1 − β) δ∞ =: ξ and
ξ(X) = 1, and we can write

µ(X) = Eξ

[(
dµ

dξ

)]
.

This is a nonequivalent measure representation. For example, let µ = δ∞. Then
dµ/dξ = a−1 e∞ ∈ L1(ξ).

27This is not possible in general.
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How good an approximation can we obtain? Given any µ ∈ M(X), let

µn :=
n∑

i=1

mi δi + (m̃n + m∞) δ̃n.

Note µn(X) = µ(X) and µn
w∗−−→ µ. In particular,

ξn :=
n∑

i=1

βi δi +
(
β̃n + (1− β)

)
δ̃n.

Treating µn and ξn as approximations to µ and ξ (respectively), we can write

µ(X) ≈
∫

X

(
dµn

dξn

)
dξn = Eξn

[(
dµn

dξn

)]
,

where ξn is an equivalent measure (to ϕ). The approximation can be made arbi-
trarily good by letting n get arbitrarily large.

Arbitrage and approximate arbitrage. Here we examine the conditions for no
arbitrage and no approximate arbitrage. The marketed securities are the Arrow–
Debreu securities (one for each finite state) and a bond that pays one unit in every
finite state.

The payout to the n-th A–D security is en and the payout to the bond is 1N =∑∞
i=1 ei. The set of marketed payouts is M0 := {1N} ∪ {en}∞n=1. The space of

marketed payouts is M := sp(M0). Note M ⊂ C(N∞). Note z ∈ M if and only if
z = a0 1N +

∑∞
i=1 ai ei where the sequence {ai}∞i=1 has finite support. The cost of

z ∈M is V (z) = a0 V0(1N)+
∑∞

i=1 ai V0(en), where V0(1N) and V0(en) are the given
prices of the marketed securities. Let V0(en) = βn and V0(1N) = B > 0.28 Thus
V (z) = a0 B +

∑∞
i=1 ai βi.

Arbitrage. There are no arbitrage opportunities if and only if V is a strictly posi-
tive linear functional. The following conditions are necessary and sufficient for the
absence of arbitrage:

βn > 0 ∀n ∈ N and β 6 B. (4.3)

We address necessity first. If βn 6 0, then z = B en − βn 1N is an arbitrage since
V (z) = 0 and z is nonnegative and not zero. On the other hand, if β > B, then
there is some finite n for which

∑n
i=1 βi = b > B. In this case,

z = b1N −B
n∑

i=1

ei =
n∑

i=1

(b−B) ei + b
∞∑

i=n+1

ei

is an arbitrage since V (z) = 0 and z is nonnegative and not zero.
We now show that conditions (4.3) are sufficient to guarantee the absence of

arbitrage by displaying the requisite linear functional. For z ∈ C(N∞) ⊃M, we can

28In Werner (1997), βi = (2 i (i + 1))−1, β = 1/2, and B = 1.
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express V as the strictly positive linear functional29

V (z) =
∫

X
z dλ + Lim[z] (B − β), (4.4)

where λ =
∑

i∈N βi δi. Consequently, there are no arbitrage opportunities in the
marketed subspace M. This is true even though

∑∞
i=1 V (ei) < V (

∑∞
i=1 ei).

Approximate arbitrage. There are no approximate arbitrage opportunities if and
only if V is a strictly positive continuous linear functional on M, the closure of the
space of marketed payouts. For simplicity of exposition, we adopt the norm closure:
M = L1(λ). (Essentially the same arguments hold for the weak* closure.)

The following conditions are necessary and sufficient for the absence of approxi-
mate arbitrage:

βn > 0 ∀n ∈ N and β = B. (4.5)

We address sufficiency first. If β = B, then V (z) =
∫
X z dλ is a valuation oper-

ator on (L1(λ), ‖ ‖λ
1) and hence guarantees the absence of approximate arbitrage

opportunities.
We show β = B is necessary by presenting an approximate arbitrage if (4.3)

holds and β < B. Let zn = (1 + γn)
∑n

i=1 ei − γn 1N, where

γn :=
∑n

i=1 βi

B −∑n
i=1 βi

.

Then V (zn) = 0 and zn
λ−→ 1N. There is an approximate arbitrage if ‖zn−1N‖λ

1 → 0.
Note

‖zn − 1N‖λ
1 = (1 + γn) β̃n =

(
β −∑n

i=1 βi

B −∑n
i=1 βi

)
B. (4.6)

Therefore,

lim
n→∞ ‖zn − 1N‖λ

1 =

{
0 β < B

B β = B.
(4.7)

Consequently, β < B =⇒ ‖zn − 1N‖λ
1 → 0 and {zn} constitutes an approximate

arbitrage.30

5. Dynamic securities market model in the countable setting

We build on the setting in Section 4, adding a filtration. This is essentially the
stochastic setting in the example of Back and Pliska (1991).

We formalize the setting for the doubling strategy as outlined by Harrison and
Kreps (1979). We consider a roulette wheel with two colors, red and black, that
will be spun repeatedly. There is positive probability that each color will occur on
the next spin.

29Note a0 B +
∑∞

i=1 ai βi =
∑∞

i=1(a0 + ai) βi + a0 (B − β) where a0 = Lim[z] for z ∈ M.
30If the bond included a payout at infinity (in addition to its payouts at finite times), then

β < B would not necessarily generate an approximate arbitrage. See Appendix B.
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Stochastic processes. Given the measurable space (N∞,B(N∞)), a random vari-
able Z is a measurable function Z : N∞ → R. Such a random variable can be
characterized by the sequence {Z(ω)}ω∈N∞ , where Z(ω) is the value of Z given
that red occurs on the ω-th spin for ω ∈ N and Z(∞) is the value of Z if red
never occurs. Given S, a collection of subsets of N∞, let σ(S) denote the σ-algebra
generated by S. Define

Fi := σ
({{1}, {2}, · · · , {i}})

i ∈ N. (5.1)

Note {Fi}∞i=1 is a filtration—an increasing family of sub-σ-algebras such that Fn ⊂
Fn+1 for all n ∈ N. Let F0 := σ({∅}) = {∅,N∞} and F∞ := σ (∪∞i=1Fi) = B(N∞).

A stochastic process Z = {Zi}∞i=1 is an infinite sequence of random variables. For
fixed i, Zi describes the value of the process Z after the i-th spin. We restrict our
attention to stochastic processes that are adapted to the filtration—that is, such
that for each i ≥ 1, Zi is measurable with respect to Fi. Note that Zi ∈ C(N∞),
since Zi has a constant tail. Every adapted stochastic process Z can be described
in terms of two sequences: {zr(ω)}ω∈N and {zb(i)}i∈N, where zr(ω) is the terminal
value of Z given the first red occurs on spin ω and zb(i) is the value of Z after the
i-th spin given that red has not yet occurred:

Zi(ω) =

{
zr(ω) ω 6 i

zb(i) ω > i.
(5.2)

Note that if zb(i) = zr(i), then Zi is Fi−1-measurable. If zb(i) = zr(i) = ζi for all
i ∈ N, then we say that Z is predictable (or previsible) and we say the sequence
{ζi}i∈N represents a predicable stochastic process.

For fixed i, Zi(·) is a random variable; for fixed ω, Z·(ω) is a path. On each
path, Zi(ω) converges to zr(ω). We can also express Zi in terms of unit coordinate
vectors:

Zi =
i∑

j=1

zr(j) ej + zb(i) ẽi. (5.3)

Given (5.3), we have

∆Zi =
(
zr(i)− zb(i− 1)

)
ei +

(
zb(i)− zb(i− 1)

)
ẽn, (5.4)

where ∆Zi := Zi − Zi−1.
Fix the probability measure ϕ :=

∑∞
i=1 αi δi, where αi > 0 for all n ∈ N and∑∞

i=1 αi = 1. Let α̃n :=
∑∞

i=n+1 αi. Note ϕ is equivalent to λ (ϕ ¿ λ and
λ ¿ ϕ). In particular, Bϕ = Bλ, the ϕ-null sets are ∅ and {∞}, and suppϕ =
N∞. Note (N∞, B(N∞), ϕ) is a probability space and (N∞,B(N∞), {Fi}∞i=1, ϕ) is
a filtered probability space. Define L1(ϕ) := L1(N∞, B(N∞), ϕ). For µ ∈ Bϕ,
Tϕ(µ) = dµ/dϕ =

∑∞
i=1(mi/αi) ei. For z ∈ L1(ϕ), T−1

ϕ (z) =
∑∞

i=1 αi z(i) δi. Let
π = Tϕ(λ) = dλ/dϕ =

∑∞
i=1(βi/αi) ei. Note Eϕ[π] =

∑∞
i=1 π(i) αi = β. Let

Eϕ[Z] =
∑∞

i=1 Z(i)αi for Z ∈ L1(ϕ). Let Eϕ
i−1[Z] := Eϕ[Z | Fi−1] for Fi−1-

measurable Z ∈ L1(ϕ). Finally, let pi denote the conditional probability of ω = i
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given ω ≥ i:

pi =
αi

1−∑i−1
j=1 αj

=
αi

α̃i
and αi = pi

i−1∏

j=1

(1− pj).

(αi is the unconditional probability of ω = i.)
Now we construct a shock process U := {Ui}∞i=0 to use as a building block. Define

ζi :=
√

(1− pi)/pi. Let Ui :=
∑i

j=1 ur(j) ej + ub(i) ẽi, where

ur(i) = ub(i− 1) + ζi

ub(i) = ub(i− 1)− ζ−1
i

subject to ub(0) = 0. Note ∆Ui = ζi ei−ζ−1
i ẽi. U is a ϕ-martingale: Eϕ

i−1[∆Ui] = 0.
In addition,

Eϕ
i−1[(∆Ui)2](ω) =

{
0 ω < i

1 ω ≥ i.

Constructing stochastic processes from measures. Given a measure µ ∈
M(X), we construct a stochastic process adapted to the filtration {µn}∞n=1 such

that µn
w∗−−→ µ.

Note that the only nonempty λ-null set is {∞} and that {∞} 6∈ Fn for any
n ∈ N.31 Therefore, given any µ ∈ M(X), the restriction of µ to Fn is absolutely
continuous with respect to the restriction of λ to Fn.

Let

µ :=
∞∑

i=1

mi δi + m∞ δ∞.

The restrictions of µ and λ to Fn are given by

λn =
n∑

i=1

βi δi + β̃n δ̃n

and

µ̂n =
n∑

i=1

mi δi + (m̃n + m∞) δ̃n, (5.5)

where m̃n :=
∑∞

i=n+1 mi. Then

zn =
dµ̂n

dλn
=

dµ̂n

dλn
=

n∑

i=1

(
mi

βi

)
ei +

(
m̃n + m∞

β̃n

)
ẽn (5.6)

and32

µn = T−1
λ (zn) = µ̂n.

31Similar comments apply to any positive measure equivalent to λ such as ϕ.
32Note that µn is the extension of µ̂n to B(N∞), where µ̂n is the restriction of µ to Fn. In this

setting, it is not necessary to compute µ̂n first.
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In addition, define

z :=
∞∑

i=1

(
mi

βi

)
ei,

where z ∈ L1(λ). Note {zn}∞n=1 is adapted to the filtration, ‖zn‖λ
1 = ‖µ‖ for all

n ∈ N, and

zn−1(ω) =

{
zn(ω) ω 6 n− 1(

βn

β̃n−1

)
zn(n− 1) +

(
β̃n

β̃n−1

)
zn(n) ω > n− 1.

(5.7)

Thus, if β = 1, then λ is a probability measure and {zn}∞n=1 is a martingale where
Eλ[zn] = µ(N∞) and

zn = Eλ[z|Fn] +
(

m∞
β̃n

)
ẽn.

Note zn
λ-a.e.−−−→ z and ‖z − zn‖λ

1 = ‖µ − µn‖ −→
n

2 |m∞|. Note {zn}∞n=1 is uniformly

integrable if and only if m∞ 6= 0, since limn→∞ |m∞|/β̃n = ∞ and Eλ[|m∞|/β̃n] =
|m∞|.

Given π = dλ/dϕ =
∑∞

i=1(βi/αi)ei, define

πn := Eϕ[π|Fn] =
n∑

i=1

(
βi

αi

)
ei +

(
β̃n

α̃n

)
ẽn.

Note {πn}∞n=1 is a ϕ-martingale and Eϕ[πn] = β for all n ∈ N. Also note {zn πn}∞n=1

is a ϕ-martingale and

zn πn = E[z π|Fn] +
(

m∞
α̃n

)
ẽn =

n∑

i=1

(
mi

αi

)
ei +

(
m̃n + m∞

α̃n

)
ẽn,

where z π =
∑∞

i=1(mi/αi) ei.
Given ξ = λ + (1− β) δ∞, let

ξn =
n∑

i=1

βi δi +
(
β̃n + (1− β)

)
δ̃n.

Note (for all n ∈ N∪{0}) ξn(A) = ξ(A) for all A ∈ B(X). In particular, ξn(X) = 1.
Now let Y = {Yn}∞n=0 where

Yn = Tϕ(ξn) =
n∑

i=1

(
βi

αi

)
ei +

(
β̃n + (1− β)

ãn

)
ẽn.

In particular, Y0 = ẽ0. By construction, Y ⊂ L1(ϕ) is a strictly positive martingale
and Yn

w∗−−→ ξ, but Y is UI if and only if β = 1 (i.e., ξ = λ).
Moreover,

∫

X
dµ =

∫

X

(
dµ

dξ

)
dξ =

∫

X

(
dµn

dξn

)
dξn = Eξ

[
dµn

dξn
|Fn

]
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Dynamic securities market. Consider a market for trading two securities at a
countable number of times 0 = t0 < t1 < · · · < T .33 The price of one security (the
bond or ‘money-market account’) at time ti equals 1 in every state: Bi(ω) = 1. The
state-by-state price of the second security (the ‘stock’) at time ti is denoted Si(ω).34

The dynamics of the stock price can be specified by

∆Si = mi + σi ∆Ui, (5.8)

given some S0. We assume σi 6= 0 for all i ∈ N (spanning condition). The mean
and the variance of the conditional change in the stock price (conditional on ω ≥ i)
are given by

Eϕ
i−1[∆Si](ω ≥ i) = mi and Eϕ

i−1[(∆Si −mi)2](ω ≥ i) = σ2
i .

Given (5.8), we have

Si = S0 +
i∑

j=1

∆Si = S0 +
i∑

j=1

mj +
i∑

j=1

σj ∆Uj

so that

sr(i) = sb(0) +
i∑

j=1

mj −
i−1∑

j=1

σj ζ−1
j + σi ζi

sb(i) = sb(0) +
i∑

j=1

mj −
i∑

j=1

σj ζ−1
j .

Price of risk, state-price deflator, and change-of-measure process. Let
`i := mi/σi, which is the coefficient of variation (the ratio of the mean to the
standard deviation) conditional on ω ≥ i. Since the interest rate is zero, `i is the
Sharpe ratio of the stock. It is also the price of risk. (Note {mi}∞i=1, {σi}∞i=1, and
{`i}∞i=1 represent predictable processes.)

Define Y := {Yi}∞i=1. Let Yi :=
∏i

j=1 Xi where Xi := 1− `i ∆Ui. Note Eϕ
i−1[Xi] =

1 and Eϕ
i−1[Xi ∆Ui](ω ≥ i) = −`i since Xi ∆Ui = ∆Ui− `i (∆Ui)2. Note that Y is a

ϕ-martingale: Eϕ
i−1[∆Yi] = 0 since ∆Yi = −Yi−1 `i ∆Ui. In particular, Eϕ[Yn] = 1

for all n ∈ N.
Note that {Si Yi}∞i=1 is also a ϕ-martingale:

Eϕ
i−1[∆(Si Yi)] = Yi−1 Eϕ

i−1[Xi ∆Si] + Si−1 Eϕ
i−1[∆Yi] = 0,

since (conditional on ω ≥ i)

Eϕ
i−1[Xi ∆Si] = mi + σi E

ϕ
i−1[Xi ∆Ui] = mi − `i σi = 0.

33For example, T < ∞ and ti = T (1− (1/2)i).
34To allow for a non-zero interest rate r, let B̃i(ω) = er ti be the money-market account and

define S̃i := B̃i Si. Then Bi = B̃i/B̃i and Si = S̃i/B̃i.
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It is convenient to reexpress Xi and Yn. In particular,

Xi =
i−1∑

ω=1

eω +
(

qi

pi

)
ei +

(
1− qi

1− pi

)
ẽi, (5.9)

where
qi := (1− `i ζi) pi. (5.10)

Thus `i = (pi − qi)/
√

pi (1− pi). Note that qi can be computed directly from sr

and sb:

qi =
sb(i)− sb(i− 1)

sb(i)− sr(i)
.

The condition σi 6= 0 is equivalent to sb(i)− sr(i) 6= 0.35 Given (5.9), we can write

Yn =
n∑

i=1

yr(i) ei + yb(n) ẽn,

where

yr(i) =
qi

∏i−1
j=1(1− qj)

pi
∏i−1

j=1(1− pj)
=

βi

αi

yb(n) =
∏n

i=1(1− qi)∏n
i=1(1− pi)

=
β̃n + (1− β)

α̃n
,

using βi = qi
∏i−1

j=1(1− qj).
If Y is strictly positive martingale, then it is a state-price deflator.36 It is easily

seen that Y is strictly positive if and only if

0 < qi < 1 ∀ i ∈ N. (5.11)

Note (5.11) is equivalent to (4.3). If Condition (5.11) holds, we can compute the
equivalent measure λ = T−1

ϕ (yr), where yr = π. (Note Yn
ϕ-a.e.−−−→ π.)

A uniformly integrable state-price deflator is a change-of-measure process. Note

T−1
ϕ (Yn) =

n∑

i=1

βi δi +
(
β̃n + (1− β)

) ∞∑

i=n+1

(
αi

α̃n

)
δi,

and therefore
T−1

ϕ (Yn) w∗−−→ ξ, (5.12)

35Given sr and sb, we can write

mi =
(
sr(i)− sb(i− 1)

)
pi +

(
sb(i)− sb(i− 1)

)
(1− pi)

= (pi − qi)
(
sb(i)− sr(i)

)

σi =
{(

sr(i)− sb(i− 1)−mi

)2
pi +

(
sb(i)− sb(i− 1)−mi

)2
(1− pi)

}1/2

=
{
pi (1− pi)

(
sb(i)− sr(i)

)2}1/2
.

36Warning: Harrison and Kreps (1979) and others include uniform integrability in their defini-
tion of a state-price deflator (which we call a change-of-measure process).
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where ξ = λ + (1− β) δ∞ [see (B.1)]. Therefore, Y is UI if and only if β = 1. Given
β = 1, Eλ[Z] = Eϕ[yr Z] and Eλ

i−1[Zi] = Eλ
i−1[Xi Zi]. In this case, we say λ is an

equivalent martingale measure.

Self-financing trading strategies. A trading strategy is a pair of predictable
processes represented by ({θi}∞i=1, {φi}∞i=1) where θi is the number of bonds and φi

is the number of shares of stock held at time ti after any changes in the value of the
stock but before any rebalancing. The exposition that follows is intended to make
the meaning of this clear.

Let G0 denote the initial amount invested. At time t0, G0 is apportioned between
the stock and the bond: G0 = θ1 +φ1 S0. At time t1, after any changes in the share
price but before any rebalancing, the value of the portfolio is G1 = θ1 +φ1 S1. After
rebalancing, the value of the portfolio is G′

1 = θ2 +φ2 S1. In gereral, Gi = θi +φi Si

and G′
i = θi+1+φi+1 Si. For a self-financing trading strategy, G′

i = Gi which implies

(θi+1 − θi) + (φi+1 − φi) Si = 0 ∀ i ∈ N. (5.13)

In other words, any change in the value of the stock holdings that comes from
rebalancing is offset by an equal change in the opposite direction of the value of
the bond holdings. From one period to the next, the change in the value of a
portfolio generated by a self-financing trading strategy is ∆Gi = φi ∆Si and there-
fore Gi = G0 +

∑i
j=1 φj ∆Sj . We refer to Gi as the gain and G = {Gi}∞i=1 as

the gains process.37 A self-financing trading strategy is characterized by the pair
(G0, {φi}∞i=1).

A finite trading strategy is a self-financing trading strategy for which φi = 0 for
all i > n ∈ N. The gain Gn generated by a finite trading strategy is called a finite
gain stopped at n. Let Gi =

∑i
j=1 gr(j)ej + gb(i) ẽi, where

gr(i) = gb(i− 1) + φi

(
sr(i)− sb(i− 1)

)
(5.14a)

gb(i) = gb(i− 1) + φi

(
sb(i)− sb(i− 1)

)
, (5.14b)

subject to gb(0) = G0. For a finite trading strategy stopped at n, Gi = gr for all
i ≥ n. Consequently, Gi → gr in all modes of convergence.

We now describe the space of marketed payouts and show that it is the space
of finite gains. Define M0,n := B ∪ (

⋃
0<i6n Si) and the set of marketed securities

as M0 :=
⋃

n≥0M0,n. The given prices for the marketed securities are V0(B) = 1
and V0(Si) = S0 for all i ∈ N. The space of marketed payouts, M := sp(M0).
Now z ∈ sp(M0,n) has the form z = a0 B +

∑n
i=1 ai Si, where V (z) = a0 V0(B) +∑n

i=1 ai V0(Si) = a0 + S0
∑n

i=1 ai. This z can be obtained via the following finite
self-financing trading strategy: G0 = V (z) and φi =

∑n
j=i aj .

It turns out that set of marketed securities in the dynamic case spans the same
space as the set of marketed securities in the static case above, so that the two
spaces of marketed payouts are identical. Therefore, it is not surprising that the
conditions for no arbitrage and no approximate arbitrage are also identical.

37Warning: Pliska (1997) and others refer to Gi −G0 as the gain.
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Arbitrage. An arbitrage is a finite trading strategy for which G0 = 0, gr(i) ≥ 0 for
all i ∈ N, and and gr(i) > 0 for some i ∈ N.

Consider the finite trading strategy where G0 = 0 and

φi =

{
1

sr(n)−sb(n) i = n

0 i 6= n.

This trading strategy produces gr = (1−qn) en−qn ẽn, which is an arbitrage unless
Condition (5.11) holds.

Conversely, suppose Condition (5.11) holds. Set βi = qi
∏i−1

j=1(1− qj).38 Then for
any finite gain stopped at n, we can use (5.14) to eliminate {φi}n

i=1 and {gb(i)}n−1
i=1

to produce:
n∑

i=1

gr(i) βi + gb(n)
(
β̃n + (1− β)

)
= G0, (5.15)

where gr(j) = gb(n) for j ≥ n + 1. Given the positivity of βi and β̃n + (1− β), no
finite gain can be an arbitrage. Note that we can express (5.15) as V (gr) = G0,
where V is given in (4.4).

Approximate arbitrage. Assume the no-arbitrage Condition (5.11) holds. Therefore,
a state-price deflator exists and λ =

∑∞
i=1 βi δi is an equivalent measure. (See

above.) Given β = 1, λ is an equivalent martingale measure and the gains process
is a martingale: Eλ

i−1[∆Gi] = φi E
λ
i−1[∆Si] = φi E

ϕ
i−1[Xi ∆Si] = 0. Therefore,

Eλ[Gn] = G0 where Eλ[Gn] =
∫
X Gn dλ.

An admissible self-financing trading strategy is one for which the generated gain
process converges in the appropriate topology. For example, if the payout space is
(L1(λ), ‖ ‖λ

1), then an admissible trading strategy is one for which ‖Gn −G‖λ
1 → 0

for some G ∈ L1(λ). In this case, z 7→ Eλ[z] is a valuation operator. On the other
hand, if the payout space is (M(X), w∗), then an admissible trading strategy is one
for which T−1

λ (Gn) w∗−−→ µ ∈ M(X), where Tλ(µ) = dµ/dλ. In this case µ 7→ 〈1, µ〉
is a valuation operator. For µ ∈ Bλ, 〈1, µ〉 = Eλ[T−1

λ (µ)].

Equivalences. The following statements are equivalent:

(1) Y is a strictly positive and uniformly integrable ϕ-martingale.
(2) There is an equivalent martingale measure λ.
(3) z 7→ ∫

X z dλ is a valuation operator for (L1(λ), ‖ ‖λ
1).

6. Role reversal in the countable setting

In this section, we reverse the roles of the dual pair of spaces: Let C(N∞) equipped
with the sup norm topology be the space of payouts and let M(N∞) be the space

38Note qn is the conditional price of bet that pays $1 if red occurs (conditional on ω ≥ n),
while βn is the unconditional price (i.e., the price given before the first spin; conditional on ω ≥ 1).
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of price systems. The valuation operator is given by

f 7→ 〈f, µ〉 =
∞∑

i=1

f(i) mi + Lim[f ] m∞,

for some strictly positive µ where mi > 0 for i ∈ N∞.

Static setting. Let us revisit the conditions for no arbitrage and no approximate
arbitrage in the static setting of Section 4. In this case, Conditions (4.3) are neces-
sary and sufficient for the existence of a valuation operator.

Take ξ = λ + (1− β) δ∞ [as given in (B.1)] to represent the price system. Then,
given Conditions (4.3), V : C(N∞) → R is a valuation operator, where

V (f) = 〈f, ξ〉 = 〈f, λ〉+ (1− β) 〈f, δ∞〉 =
∫

X
f dλ + Lim[f ] (1− β).

Compare with (4.4). The payout to the n-th Arrow–Debreu security is en and the
payout to the bond be given by 1. We have 〈en, ξ〉 = βn and 〈1, ξ〉 = 1.

Dynamic setting. In this setting, a trading strategy is admissible if and only if it
generates a gain process that converges in the sup norm topology.39

Note Gn ∈ C(N∞), assuming Gn(∞) = limi→∞ Gn(i). If {Gn}∞n=1 converges in

the sup norm topology, then Gn
‖ ‖∞−−−→ gr ∈ C(N∞), in which case limn→∞ gr(n)−

gb(n) = 0. Given G0 and gr, we can eliminate φi from (5.14) and solve recursively
for

gb(i) =
G0 −

∑i
j=1 gr(j)βj

β̃i + (1− β)
. (6.1)

Assuming (5.11) and referring to (6.1), note

lim
n→∞ gr(n)− gb(n) = Lim[gr]− G0 −

∑∞
i=1 gr(i) βi

1− β
.

Therefore
Gn

‖ ‖∞−−−→ gr ⇐⇒ 〈gr, ξ〉 = G0.

Consequently, gr = 1 combined with G0 = 0 does not produce an approximate
arbitrage because the implied gains process does not converge. Thus f 7→ 〈f, ξ〉 is
a valuation operator.

In this case, Y is a state-price deflator, although it is not uniformly integrable
as can be seen in (5.12) and it does not deliver a change-of-measure process (as
we have defined it). Thus, ξ is a martingale measure, but it is not equivalent to
ϕ. Nevertheless, (i)

∫
X Gn dξ = Eϕ[Gn Yn] and (ii) if ‖Gn − gr‖∞ → 0, then∫

X gr dξ = limn→∞ Eϕ[Gn Yn].

39Back and Pliska (1991) present the following stock-price dynamics: sr(i) = 2−i (i2 + 2 i + 2)

and sb(i) = 2−i. These dynamics produce qi = 1/(i + 1)2, βi = (2 i (i + 1))−1, and β = 1/2. Other
stock-price dynamics produce identical bet prices; for example, sr(i) = 2 and sb(i) = 2/(i + 2).
Even though the bet prices are identical, the trading strategies {φi}∞i=1 required to produce a given
payout are quite different.
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Equivalences. The following statements are equivalent:
(1) Y is a strictly positive ϕ-martingale.
(2) There is a valuation operator for (C(X), ‖ ‖∞).

Appendix A. The Cantor Space

The Cantor space C = {0, 1}N of countably infinite sequences of zeros and ones
is compact in the product topology (where {0, 1} is equipped with the discrete
topology).40 The topology is metrizable.41 In fact, the Cantor space is the mother
of all compact metrizable spaces: Every compact metrizable space is homeomorphic
to a quotient space of the Cantor space.42 We illustrate this with two examples.

First, consider the following equivalence relation: x ∼ y if
∞∑

i=1

2−i x(i) =
∞∑

i=1

2−i y(i).

For example, {1, 0, 0, . . .} ∼ {0, 1, 1, . . .}. In this case, C/∼ is homeomorphic to the
closed unit interval on the real line [0, 1] via the homeomorphism p : C/∼ → [0, 1]
where p([x]) =

∑∞
i=1 2−i x(i).

Second, consider the following. For n ∈ N and 0 6 i 6 2n − 1, define

Bi
n :=



x ∈ C :

n∑

j=1

2n−j x(j) = i



 . (A.1)

Let B0
0 := C and B1∞ :=

{{0, 0, . . .}}. Note {B1
n}n∈N∞ is a partition of C. (If x ∈ B1

n,
then x(n) = 1 and x(i) = 0 for i < n.) Define the equivalence relation by x ∼ y
if x, y ∈ B1

n. In this case, C/∼ is homeomorphic to N∞ via the homeomorphism
p : C/∼ → N∞, where p([x ∈ B1

n]) = n.

40The Cantor set (as it is usually defined) is the following set of points in the unit interval:

C =

{ ∞∑
i=1

3−i a(i) : a(i) = 0 or a(i) = 2

}
.

The Cantor space C is homeomorphic to the Cantor set C via the homeomorphism g : C → [0, 1],
where g(x) =

∑∞
i=1 3−i 2 x(i).

41A metric that generates the product topology τC is

d(x, y) =

∞∑
i=1

3−i |x(i)− y(i)|,

for x, y ∈ C. Thus (C, d) is a compact metric space and xn
τC−−→ x ⇐⇒ d(xn, x) → 0.

42Let X be a topological space and let ∼ be an equivalence relation on X. Let X/∼ denote the
set of all equivalence classes [x] = {y ∈ X : x ∼ y}. X/∼ is called the quotient space of X by the
equivalence relation ∼. Define a function q : X → X/∼ by q(x) = [x]. This map q is called the
quotient map. Define a set A ⊂ X/∼ to be open if q−1(A) is open in X. This collection of open
sets defines a topology on X/∼ called the quotient topology. If X is compact, then so is X/∼.
A function f : X/∼ → Y is continuous if and only if the composite function f ◦ q : X → Y is
continuous.
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Appendix B. Redefine the bond’s payout

If β < B, we can avoid approximate arbitrage opportunities by redefining the
bond’s payout. (We are not always free to do this.) As a first step, we can identify
the payouts of the bond and the A–D securities with elements of Bλ: T−1

λ (1N) = λ

and T−1
λ (en) = βn δn. Next, let the payout to the bond be redefined as43

ξ := λ + (B − β) δ∞. (B.1)

Then µ 7→ 〈1, µ〉 is a valuation operator. Note 〈1, βn δn〉 = βn and 〈1, ξ〉 = 〈1, λ〉+
(B − β) 〈1, δ∞〉 = 1. Note that we can approximate ξ by λ + (B − β) δ̃n.

It is possible to redefine the payout to the bond in such a way as to achieve
the result in the preceeding paragraph without placing any weight directly on {∞}.
Let Cb(X) denote the space of bounded continuous functions on a normal Hausdorff
space X and let ban(AX) denote the space of normal charges on the algebra gener-
ated by the open sets of X. Then a version of the Riesz Representation Theorem
states that the dual of Cb(X) is ban(AX).44 Since N∞ is a normal Hausdorff space
and C(N∞) = Cb(N∞), the theorem applies here. The pure charge that represents
the linear functional f 7→ (B − β) Lim[f ], for f ∈ C(N∞), does not involve placing
any weight on {∞}. Nevertheless, the effect is the same.

Appendix C. Some useful theorems

These theorems are taken from Aliprantis and Border (1999).

Theorem (2.66). Let (X, τ) be a noncompact locally compact Hausdorff space and
let X∞ = X ∪ {∞}, where ∞ 6∈ X. Then the collection

τ∞ = τ ∪ {X∞ \K : K ⊂ X is compact}
is a topology on X∞. Moreover, (X∞, τ∞) is a compact Hausdorff space and X is
an open dense subset of X∞.

Theorem (3.32). The one-point compactification X∞ of a noncompact locally com-
pact Huasdorff space X is metrizable if and only if X is second countable.

Theorem (8.48). A compact Hausdorff space X is metrizable if and only if C(X)
is a separable Banach lattice.

Theorem (6.34). A normed space is separable if and only if the closed unit ball of
its dual space is w*-metrizable.

Theorem (13.15). If X is a compact metrizable space . . . , then the norm dual of
C(X) can be identified with the . . . [space] of finite Borel measures on X.

43We can think of this as a coupon bond with lump-sum payment at infinity.
44Theorem 13.10 in Aliprantis and Border (1999).
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Appendix D. Quotations

The following quotes are taken form Aliprantis and Border (1999):

Topology is the abstract study of convergence and approximation.
[p. 19]

There are . . . advantages to working with general topological
spaces. For example, one can define topologies to make our fa-
vorite functions continuous. These are called weak topologies. . . .
[W]eak topologies are fundamental to understanding the equilibria
of economies with an infinite dimensional commodity space. [p. 20]

[An] important topological notion is compactness. Compact sets
can be approximated arbitrarily well by finite subsets. (In Euclidean
spaces, the compact sets are the closed and bounded sets.) . . . [T]he
Alaolgu Theorem . . . describes a general class of compact sets in in-
finite dimensional spaces. [p. 20]

In many ways compactness can be viewed as a topological gener-
alization of finiteness. [p. 39]

There are two classes of topologies that by and large include every-
thing of interest. The first and most familiar is the class of topologies
that are generated by a metric. The second class is the class of weak
topologies. [p. 47]

One way to think of functional analysis is as the branch of math-
ematics that studies the extent to which the properties possessed by
finite dimensional spaces generalize to infinite dimensional spaces.
[p. 161]

In the introduction to Chapter 5 (“Topological Vector Spaces,” p. 163) they write
(with minor adjustments to their notation45)

[One] of the consequences of the Hahn–Banach Theorem is that the
set of continuous linear functionals on a locally convex space sepa-
rates points. The collection of continuous linear functionals on X
is known as the (topological) dual space, denoted X∗. Now each
x ∈ X defines a linear functional on X∗ by x(x∗) = x∗(x). Thus we
are led to the study of dual pairs 〈X,X∗〉 of spaces and their associ-
ated weak topologies. These weak topologies are locally convex. The
weak topology on X∗ induced by X is called the weak-* topology.
The most familiar example of a dual pair is probably the pairing
of functions and measures—each defines a linear functional via the
integral

∫
X f dµ, which is linear in f for fixed µ, and linear in µ for

fixed f . (The weak topology induced on probability measures by this
duality with continuous functions is the topology of convergence in

45They use X ′ to denote the topological dual and X∗ to denote the algebraic dual, whereas we
adopt the more usual notation where X∗ denotes the topological dual.
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distribution that is used in the Central Limit Theorems.) Remark-
ably, in a dual pair 〈X, X∗〉, any subspace of X∗ that separates the
points of X is weak-* dense in X∗.

Debreu (1954) introduced dual pairs in economics in order to de-
scribe the duality between commodities and prices. According to
this interpretation, a dual pair 〈X, X∗〉 represents the commodity-
price duality, where X is the commodity space, X∗ is the price space,
and 〈x, x∗〉 is the value of the bundle x at prices x∗. . . .

Again, on page 163, they refer to “the remarkable Alaoglu Theorem” that asserts
that the unit ball in X∗ is compact in the weak-* topology.

In this paper, we adopt the duality of functions and measures and apply it to the
duality of prices and quantities; however we find it convenient to reverse the roles of
the dual pair 〈X, X∗〉, letting the space of functions X represent the price space and
the space of measures X∗ represent the commodity space. We equip X∗ with the
weak-* topology. This has the effect (among others) of making X the topological
dual of X∗.
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