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Abstract. The payout for doubling strategy contains a bubble component in
the sense of Gilles and LeRoy (1997). To support the claim that the doubling
strategy is an arbitrage, the standard analysis relies on discontinuities in marginal
utility (i.e., value) that arise from arbitrarily assigning zero value in the direction
of the bubble component. However, the doubling strategy does not present an
arbitrage opportunity for an agent with continuous marginal utility because the
payout (including the negative bubble component) is not in the positive orthant
of the appropriate space. By removing the discontinuities from the valuation
operator, standard absence-of-arbitrage arguments can be applied to L1-bounded
local martingales. Consequently, once an agent with continuous marginal utility is
admitted, there are no arbitrages in the standard continuous-time finance model.

1. Introduction

The doubling strategy is the bugbear of continuous-time finance. It is a self-
financing trading strategy that generates something for nothing–an arbitrage. Any
agent who prefers more to less has an unbounded demand for such a trading strategy.
Even the representative agent wants to trade: Robinson Crusoe, endowed only with
his coconut tree, yearns to be confronted with a price system proportional to his
marginal utility and bankrolled with wealth equal to the value of his tree so that
he can undertake the doubling strategy. The response to this intolerable state of
affairs varies across jurisdictions: Some limit the amount a trader may borrow while
others outlaw the trading strategies that require more than limited borrowing. Our
response is different. We confirm that Crusoe does indeed prefer more to less,
and then we show that Crusoe’s marginal utility in the direction of the doubling
strategy is zero. Therefore, the doubling strategy is simply not an arbitrage. The
price system constructed from Crusoe’s marginal utility is in fact a no-trade price
system. No restrictions on trade are required.
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The source of the apparent arbitrage is the discontinuity of marginal utility that is
arbitrarily and unnecessarily imposed. Continuity is the purview of topology, so we
seek a topological vector space for which marginal utility (i.e., value) is continuous.
The discontinuity arises because the sequence of payouts that comprise the dou-

bling strategy converges pointwise but not uniformly. It is rather like the Three
Stooges’ routine in which Moe directs Curly to close all the drawers in a chest of
drawers, but each time Curly closes one drawer another pops open. For our pur-
poses, suppose the chest had an infinite number of drawers, all closed but the first,
and Curly systematically worked his way through the drawers, closing drawer after
drawer with the predicable result that each time he closed one the next one in order
popped open. When questioned by Moe, Curly would explain with satisfaction that
every drawer is eventually permanently closed, to which an exasperated Moe would
respond that there was always one drawer open (“you knucklehead!”). Larry would
try to mediate the disagreement, observing that Curly had a pointwise notion of
completing the task, while Moe had a uniform notion, at which point Moe would
knock Curly’s and Larry’s heads together.
Suppose each drawer is associated with a specific commodity.1 An open drawer

represents the presence of one unit of that commodity in a bundle of commodities.
In general, many drawers could be open simultaneously. Curly, however, generates
a specific sequence of bundles hxni, where each bundle is itself an infinite sequence,

x1 = {1, 0, 0, 0, · · · }
x2 = {0, 1, 0, 0, · · · }
x3 = {0, 0, 1, 0, · · · }

and so forth. This sequence of bundles converges pointwise to a bundle represented
by a sequence of zeros, but it does not converge uniformly. Now suppose Crusoe
gets one unit of marginal utility from each good in the bundle. Each of the bundles
that Curly generates produces one unit of marginal utility for Crusoe, so of course
the sequence of marginal utilities converges to one.
We can now pose the central question: What is the marginal utility of the limiting

bundle? Is it zero (in the limit every good is absent from the bundle) or is it one
(every bundle in the sequence has one item in it)? The standard practice is to insist
that every rational agent must agree that the marginal utility of the limiting bundle
is zero. However, our man Crusoe demurs. He claims the marginal utility of the
limiting bundle for him is one. The resident psychiatrist is willing to declare Crusoe
rational, but only if there is an objective bundle to which such marginal utility can
be ascribed. But in what sense can the sequence of bundles have converged if not
pointwise or uniformly? As it turns out, the sequence of bundles has limit points

1This example is corresponds to the treatment of the very-long discount bond in the appendix
in Gilles and LeRoy (1997). In their setting, the sale of such a bond is equivalent to a Ponzi scheme
in which an investors rolls over short-term borrowing forever. In fact, our critique of the standard
treatment of the doubling strategy applies equally well to the standard treatment of Ponzi schemes:
The assertion that a Ponzi scheme constitutes an arbitrage opportunity relies on discontinuities in
marginal utility. In a future revision, we will emphasize the similarity between the two issues in
the body of paper.
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in a larger space equipped with the weak∗ topology; however, unlike the bundles
in the sequence, the limit-point bundles cannot be described by itemizing their
contents. Nevertheless, these limit points are well-defined objects, any of which
provides Crusoe with marginal utility of one.
More formally, adopting either almost sure convergence or convergence in measure

for sequences in L1 leads to discontinuous valuation operators that produce the
appearance of arbitrage opportunities. These arbitrages are shown to be nonexistent
when one adopts instead weak∗ convergence in (L1)∗∗, the bi-dual of L1, for which
the valuation operator is continuous. The classic example is the doubling strategy,
which amounts to a sequence of random variables that converges in probability, but
does not converge in the L1 norm topology. As a result, the value (i.e., expectation)
of the probability limit (which is positive) does not equal the limit of the values of
the sequence (which is zero)–hence, a discontinuity. Nevertheless, the sequence has
weak∗ limit points in (L1)∗∗, all of which have value zero (the limit of the sequence
of values). In other words, in (L1)∗∗ equipped with the weak∗ topology, valuation
is continuous and consequently the doubling strategy is not an arbitrage.2

The discontinuities in valuation (resulting from the standard convergence crite-
ria) reflect the existence of payout bubbles in the sense of Gilles and LeRoy (1997),
where payouts are understood as elements of (L∞)∗ = (L1)∗∗ ⊃ L1. In that paper,
the price system is in L∞ and payouts are in the dual space (L∞)∗.3 Such a payout
can be uniquely decomposed into a fundamental component in L1 (the measure
limit) and a bubble component in the orthogonal complement of L1. The funda-
mental component can be identified with a signed measure (a countably-additive
set function), while the bubble component can be identified with a pure charge (a
finitely-additive set function).4

In present paper, we take as given an economy in which the valuation of (fun-
damental) securities is computed by integration with respect to some measure µ.
Thus, we require deflated payouts (i.e., prices times payouts) to be in L1(µ). We
then change to an equivalent measure ψ (constructing the Radon—Nikodym deriv-
ative from the price system) where the payouts are themselves in L1(ψ). At this
point the analysis can proceed as outlined above.5 For example, we can apply
the analysis of bubbles-as-charges to the standard continuous-time finance model

2Kreps (1981), in his seminal discussion of arbitrage in economies with infinitely many com-
modities, lists criteria for preferences that are suitable to support no-arbitrage price equilibria.
Importantly, these criteria include the continuity of preferences in the topology adopted. This
criterion is violated by the standard analysis, which implicitly adopts the topology associated with
convergence in measure.

3The roles of prices and quantities are reversed from their earlier paper, Gilles and LeRoy (1992),
where payouts are in L∞, price systems in (L∞)∗, and bubbles are embedded in the price system.
Fairly mild restrictions on preferences and opportunity sets rule out bubbles in the price system.
See Stokey, Lucas, and Prescott (1989, Chapter 15) and Back and Pliska (1991).

4It should be noted that Gilles and LeRoy (1997) discuss the doubling strategy and we are
entirely in agreement with their analysis. Our contribution on this front is to flesh out the analysis
and extend its applicability to continuous-time finance in particular.

5Gilles and LeRoy (1997), in their analysis of the Miller—Modigliani example in which the
fundamental payouts are not integrable with respect to Lebesgue measure, use the price system
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in which the price system and a finite set of basis securities are all in L2(P ) and
deflated fundamental payouts are in L1(P ), where µ = P is the physical probabil-
ity measure. After a change to an equivalent probability measure Q, self-financing
trading strategies generate local martingales. The theory of charges is applicable
to L1(Q)-bounded local martingales, which includes not only the doubling strategy
but also (among other things) positive local martingales. The value of the doubling
strategy is zero because the negative value of the bubble component exactly offsets
the positive value of the fundamental component.
We have one further introductory observation. One may have no compunction

outlawing the doubling strategy, a peculiar form of gambling that appears to have
little connection with allocational efficiency. Why would anyone ever want to insure
against the event “a fair coin never comes up heads”? The very question, however,
raises the issue of the interpretation and treatment of Arrow—Debreu securities–
that is, securities that pay “one unit in one state of the world.” When there are an
uncountable number of states, Arrow—Debreu securities have positive prices but zero
expected payouts. They are pure bubbles. If these securities are arbitrages, they
must be outlawed–as of course they are in standard practice–a sorry conceptual
state of affairs indeed.6

Literature review. There is a large and growing literature on rational bubbles and
bubble-related issues. In a later version, we will include a more substantial literature
review. In the meantime, this must suffice.
We were inspired in part by LeRoy (2000), who addresses (in a somewhat different

framework) the central idea–that adopting the weak∗ topology in (L∞)∗ eliminates
the valuation discontinuities inherent in pointwise convergence and thereby simpli-
fies the framework for asset pricing.
Our paper has relevance for Loewenstein and Willard (2000). What they identify

as the bubble component of an asset’s value (p. 29) agrees with our analysis–it
is the value of the part of the payout in the orthogonal component of L1, which
is the value derived from a pure charge. However, because they do not recognize
the payout that supports the bubble value,7 they treat the presence of a bubble
component as an arbitrage opportunity, a treatment that is fully consistent with the
standard treatment of the doubling strategy, to which of course we take exception.

2. Arbitrage and value: The main point in a nutshell

We begin with a standard definition of an arbitrage and go from there. Given a
Banach lattice X (a normed linear vector space equipped with a vector order ≥),
(in effect) to redefine the norm in order to ensure the sequence of fundamental payouts is in an L1

space.
6Consequently, “complete markets” are characterized in terms of random variables with finite

variance (payoffs in L2) rather than in terms of Arrow—Debreu securities. As it turns out, the
martingale representation theorem can be used to show that a market that is “L2-complete” would
be “Arrow—Debreu complete” if the trading restrictions of standard practice were removed.

7We would amend their description (p. 29) of the bubble value as follows: “A bubble therefore
represents the amount by which the equilibrium price of an asset exceeds the present value of its
[fundamental ] payouts.”
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define the positive cone K = X+ \ {0}, where the origin has been removed.8 A
security’s payout ζ is an element of X. Assume a mapping h : X → R is given,
and let h(ζ) denote the cost of ζ. In general, there is no requirement for h to be
positive, linear, or continuous. A payout ζ0 is an arbitrage if ζ0 ∈ K and h(ζ0) ≤ 0.
A valuation operator is a positive bounded linear functional V ∈ X∗, where X∗

is the normed dual space of X and V : X → R. The positivity of V is expressed by
ζ ∈ K =⇒ V(ζ) > 0. Obviously, a payout ζ0 is not an arbitrage if h(ζ0) = V(ζ0).
Fix a measure space (Ω,F ,ψ), where F is ψ-complete and ψ is nonnegative,

countably additive, and σ-finite.9 The space of payouts is X = (L1)∗∗, the bi-
dual of L1. (Note L1 ⊂ (L1)∗∗.) The positive cone is K = (L1)∗∗+ \ {0}. Let the
valuation operator be the “unit functional” 1, which equals the number one almost
everywhere. (Note 1 ∈ L∞ = (L1)∗ ⊂ (L1)∗∗∗ = X∗.)10
Let hzni be a sequence where zn ∈ L1 for all n. Let Lim∗hzni denote the set of

weak∗ limit points of the sequence, where Lim∗hzni ⊂ (L1)∗∗.11 If the sequence has
no limit points, then Lim∗hzni = ∅.
Definition 1. If any ζ ∈ Lim∗hzni is an arbitrage, then we say the sequence hzni
generates an arbitrage; otherwise, we say the sequence does not generate an arbi-
trage.

If h(ζ) = 1(ζ) for every ζ ∈ Lim∗hzni, then the sequence hzni does not generate
an arbitrage. In particular, consider the following case. If v = limn→∞ 1(zn)
exists and is finite, then (by the definition of weak∗ convergence) 1(ζ) = v for every
ζ ∈ Lim∗hzni. If, in addition, h(ζ) = v for every ζ ∈ Lim∗hzni, then the sequence
does not generate an arbitrage. Specializing this result a bit, if z0 = 1(zn) for
all n and h(ζ) = z0 for all ζ ∈ Lim∗hzni, then the sequence does not generate an
arbitrage.

Usage. As an example, we apply our setup to continuous-time finance and show that
no arbitrage opportunities given a state—price deflator.12 For simplicity, assume a

8We adopt the following sign conventions (where the inequalities are understood to hold almost
everywhere): x ≥ 0 means x is nonnegative; x > 0 means x is nonnegative and not zero, but not
necessarily strictly positive in all coordinates; and xÀ 0 means x is strictly positive.

9Given a measure space (Ω,F , µ), recall that Lp , Lp(µ) , Lp(Ω,F , µ) is the space of
measurable functions f on Ω for which

R
Ω
|f |p dµ <∞ for 1 ≤ p <∞ and for essentially bounded

f for p = ∞. The norm is defined as kfkp , kfkµp ,
¡R
Ω
|f |p dµ¢1/p for 1 ≤ p < ∞ and as

the essential supremum of |f | for p = ∞. Two functions that agree a.e. (almost everywhere) are
identified. A sequence hfni is said to be Lp-bounded if supn∈N kfnkp <∞.

10For z ∈ L1, 1(z) = R
Ω
z dψ. More generally, for ζ ∈ (L1)∗∗, 1(ζ) = 1(ez)+R

Ω
dϕ, where ez ∈ L1

and ϕ ∈ pch is a pure charge. We refer to ez as the fundamental component of the payout ζ and
to ϕ as the bubble component. (The decomposition is unique.) Correspondingly, we refer to 1(ez)
and the fundamental value and

R
Ω
dϕ as the bubble value.

11A sequence generates a set of weak∗ limit points via its convergent subnets. Nets may be
thought of as generalizations of sequences, which are insufficient for characterizing weak∗ conver-
gence in (L1)∗∗. A net involves a partial order on a set according to which, given any two elements
of the set, there always exists an element “greater than” both. Just as sequences have subsequences,
nets have subnets. Since a sequence is a net, sequences have subnets.

12We flesh out this example below.
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finite trading interval T = [0, T ]. Given a state—price deflator, a self-financing
trading strategy can be expressed as a local martingale M , where the cost of the
trading strategy isM(0). By the definition of a local martingale, M can be reduced
via a fundamental sequence of stopping times hτni to a sequence of martingales
hMni for which E[Mn(T )] = M(0) for all n. To apply the preceding setup, let
z0 =M(0), zn =Mn(T ), and 1( · ) = E[ · ]. Consequently, no self-financing trading
strategy (including the doubling strategy) generates an arbitrage.13

3. Discussion

In the previous section, the measure space (Ω,F ,ψ) used to characterize asset-
pricing is taken as given. In practice, what is often given is a related measure
space (Ω,F , µ) where µ is equivalent to ψ and is considered the natural measure.
For our purposes, let µ be nonnegative, countably additive, and σ-finite, and let
F be µ-complete. Let π À 0 be a price system (i.e., the state prices), zn be an
asset’s payout (i.e., the quantities in each state), and π zn be the deflated payout
(i.e., the value of the asset on a state-by-state basis). Assume π zn ∈ L1(µ). The
value vn of the asset is the state-by-state weighted average of its deflated payouts:
vn =

R
Ω π zn dµ. We can express an asset’s value in terms of an equivalent measure

ψ: vn =
R
Ω zn dψ, where zn ∈ L1(ψ) and dψ

dµ = π is the Radon—Nikodym derivative.

If π ∈ L1(µ), then ψ is finite. Define the valuation operator V[z] = R
Ω z dψ for

z ∈ L1(ψ).14

Value and marginal utility. In order to illustrate the connection between value
and marginal utility, consider the following class of utility functions:

U(c) ,
Z
Ω
u(c(ω),ω)µ(dω) where uc(c,ω) ,

∂u(c,ω)

∂c
À 0.

Letting dψc/dµ = uc(c, · ), we can express utility as U(c) =
R
Ω

u(c(ω),ω)
uc(c(ω),ω)

ψc(dω).

Here U : C → R, where C = {c : u(c, · )/uc(c, · ) ∈ L1(ψc)}. Given an endowment c,
define the set of feasible directions:

F (c) = {z ∈ L1(ψc) : ∃ ² ∈ (0, 1), c+ α z ∈ C, α ∈ [0, ²]}.
We assume z > 0 is feasible. Fixing c, we compute the utility gradient in the
direction of z ∈ F (c) by the Gateaux derivative:

∇U(c; z) = lim
α↓0

U(c+ α z)− U(c)
α

=

Z
Ω
uc(c(ω),ω) z(ω)µ(dω) =

Z
Ω
z dψc,

where ∇U(c; · ) ∈ L1(ψc)∗. We can identify ∇U(c; · ) with V[ · ]. “More is preferred
to less” is expressed by z > 0 =⇒ ∇U(c; z) = V[z] > 0.

13Local martingales whose martingale sequences have no weak∗ limit points are not in (L1)∗∗.
We do attempt to characterize trading strategies that produce payouts in (L1)∗∗.

14In some cases, it is convenient to compute the Radon—Nikodym derivative as dψ
dµ = β π for

some payoff β À 0 for which
R
Ω
β π dµ = 1.
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Extending the valuation operator. Let X = L1(Ω,F ,ψ) and let f ∈ X∗.15
Any functional f : X → R can be immediately extended to f : X∗∗ → R (by virtue
of the fact that f ∈ X∗∗∗). Let 1 denote the unit functional in X∗. By the Riesz
Representation Theorem, we can express the valuation operator as V[z] = 1(z) for
z ∈ X, which can be extended to V[w] = 1(w) for w ∈ X∗∗.16
In general, 1(w) cannot be represented in terms of an integral with respect to ψ.

In order to obtain a representation for 1(w), we turn to the space of charges.17 Let
ba(Ω,F ,ψ) denote the space of bounded charges on F that vanish on sets of ψ-
measure zero. Charges are finitely-additive set functions (generalizations of signed
measures). Let ca(Ω,F ,ψ) denote the space of bounded signed measures on F that
vanish on sets of ψ-measure zero. Note that ca ⊂ ba. Let pch(Ω,F ,ψ) denote the
space of pure charges on F . The spaces ca and pch are orthogonal complements:
For any ξ ∈ ba, there is a unique decomposition ξ = ρ + ϕ, where ρ ∈ ca and
ϕ ∈ pch. There are isometric-isomorphisms between w ∈ X∗∗ and ξ ∈ ba on
the one hand and ez ∈ X and ρ ∈ ca on the other, expressed by the identities
w(f) =

R
Ω f dξ and ρ[A] =

R
A ez dψ, where f ∈ X∗ and A ∈ F . In addition, we have

w(f) = f(w). These relations allow us to write

1(w) =

Z
Ω
ez dψ + Z

Ω
dϕ, (3.1)

where ez ∈ X is the fundamental component of w and ϕ is a pure charge.18 We
can write (3.1) as V[w] = V[ez] + ϕ[Ω], where V[ez] is the value of the fundamental
component (the fundamental value) and ϕ[Ω] is the value of the bubble component
(the bubble value).
Using the theory of charges, we prove19 that if a net converges in the weak∗

topology to w ∈ (L1)∗∗, then it converges in measure (and a subnet converges
almost surely) to ez ∈ L1, where ez is the fundamental component of w.
The typical setting. In our applications, we make the following standing assump-
tions: The sequence hzni is L1(ψ)-bounded and converges to ez either almost surely
or in ψ-measure and v = limn→∞ V[zn] exists. Given Theorems A.1—A.10 in the
Appendix, we know the sequence has weak∗ limit points in L1(ψ)∗∗, the value of
the limit points is v, the fundamental component is ez, the value of the fundamental
component is V[ez], and the value of the bubble component is v− V[ez]. In addition,
if the sequence converges in the norm topology, then the bubble component is zero
and v = V[ez].

15X∗ denotes the topological dual space of X; i.e., X∗ is the space of bounded linear functionals
on X. Any normed linear space X can be naturally embedded in its bi-dual X∗∗; i.e., X ⊆ X∗∗.

16The formal extension of the utility gradient is identical to the extension of the valuation op-
erator. In principle, an extended utility function can be obtained by integration from the extended
gradient. However, given the gradient, the utility function itself plays no role in the sequel.

17See Appendix A for the basic theorems.
18Given Theorems A.1—A.4 in the Appendix, V[w] = 1(w) = w(1) =

R
Ω
dξ =

R
Ω
dρ +

R
Ω
dϕ,

where
R
Ω
dρ = ρ[Ω] =

R
Ω
ez dψ = 1(z) = V[ez] and R

Ω
dϕ = ϕ[Ω].

19See Theorem A.5 in the Appendix.



8 MARK FISHER AND CHRISTIAN GILLES

Arrow—Debreu securities. Suppose Ω is a subspace of Rd and let Ψ be the (non-
decreasing) generating function for the Stieltjes measure ψ. In addition, suppose
Ψ = Ψc+Ψd, where Ψc is an absolutely continuous function generating an absolutely
continuous measure ψc and Ψd is a jump function generating a discrete measure ψd.

20

Then

vn =

Z
Ω
zn dψ =

Z
Ω
zn(ω) dΨ(ω) =

Z
Ω
zn(ω) ∂ωΨc(ω) dω +

mX
i=1

zn(ωi)hi,

where ∂ωΨc is the density (with respect to Lebesgue measure) of ψc and {hi}mi=1 are
jumps in Ψd that correspond to the discontinuity points D = {ωi}mi=1.
For ωi ∈ D, it is straightforward to identify the value of an Arrow—Debreu secu-

rity with hi. Let
21 zn(ω) = 1{ωi}(ω), so that zn(ω) pays one unit in state ωi (and

zero elsewhere). Clearly vn = hi.
If the density is continuous at ω0 ∈ Ω \ D, we can identify ∂ωΨc(ω0) with the

value of an Arrow—Debreu security for that state of the world. For simplicity let
Ω = R and D = ∅, and assume Ψc(ω) is strictly increasing in ω. Let zn(ω) =
(n/2) 1{ω0−1/n≤ω≤ω0+1/n}(ω). In this case, zn(ω) pays a total of one unit centered
on ω0:

R
Ω zn(ω) dω = (n/2)

R ω0+1/n
ω0−1/n dω = 1. The payment becomes more and more

concentrated on ω0 as n→∞. The limiting payout is an Arrow—Debreu security.22
The payout converges to zero almost surely: limn→∞ zn(ω) = 0 for all ω ∈ Ω \ ω0.
The value of zn is vn = (n/2)

R ω0+1/n
ω0−1/n ∂ωΨc(ω) dω and limn→∞ vn = ∂ωΨc(ω0).

Since zn ≥ 0, kznk1 = vn, and so hzni is L1(ψ)-bounded. The sequence does not
converge in norm, since limn→∞ kzn − 0k1 = v > 0. Therefore, the Arrow—Debreu
security is a pure bubble with value ∂ωΨc(ω0).

Convergence in measure and convergence in norm. Here we investigate the
relation between convergence in measure and convergence in norm. We assume ψ is
finite, in which case almost sure convergence implies convergence in measure. Given
convergence in measure and the L1(ψ)-boundedness of hzni, the following condition
is necessary and sufficient for convergence in norm.23

Condition 1. For any given ε > 0, there exists δ > 0 such that for each A ∈ F
with ψ[A] ≤ δ we have supn

R
A |zn| dψ ≤ ε.

Given our standing assumptions, Condition 1 is necessary and sufficient for the
bubble component of the limit points to be zero. If Condition 1 is false, then the
sequence does not converge in the norm topology and v 6= RΩ ez dψ.

20See Kolomogorov and Fomin (1970) for a discussion of Stieltjes measures.
21The indicator (or characteristic) function is defined as

1A(x) ,
(
1 if x ∈ A
0 if x 6∈ A.

22The reader may recognize the limiting payout as a Dirac delta function.
23An L1-bounded sequence that satisfies Condition 1 is called uniformly integrable.
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The relation between the bubble value and the failure to converge in the L1 norm
topology can be illustrated simply. Define the norm-divergence,

d , lim
n→∞

Z
Ω
|zn − ez| dψ,

if the limit exists. By definition, the sequence converges to ez if and only if d = 0.
If the sequence is nonnegative and if ez = 0, then d = v; in other words, the norm-
divergence equals the bubble value.
In order to investigate the wedge between convergence in measure and conver-

gence in norm in more detail, define the set An,ε , {ω : |zn(ω)− ez(ω)| > ε}, which
is the support for where the divergence between zn and ez is greater than ε. The
measure of this support is ψ[An,ε] =

R
An,ε

dψ. Convergence in measure requires

only that for every ε > 0, limn→∞ ψ[An,ε] = 0. In other words, the support of
the divergence between zn and ez must go to zero, but the divergence itself plays
no role. By contrast, the support and the divergence play more equal roles in the
sequence involved in computing norm convergence. In particular, we can use An,ε
to partition Ω and see how the failure to converge in the norm is related to the
bubble value. First, by the definition of convergence in measure,

lim
ε↓0

lim
n→∞

R
Ω\An,ε |zn − ez| dψ = 0.

Therefore,

lim
n→∞

R
Ω |zn − ez| dψ = limε↓0 lim

n→∞
R
An,ε

|zn − ez| dψ.
We can compute value with respect to the same partition:

v = lim
n→∞

R
Ω zn dψ =

µ
lim
ε↓0

lim
n→∞

R
Ω\An,ε zn dψ

¶
+

µ
lim
ε↓0

lim
n→∞

R
An,ε

zn dψ

¶
=
R
Ω ez dψ +µlimε↓0 lim

n→∞
R
An,ε

zn dψ

¶
.

(3.2)

The second term in the second line of (3.2) provides an explicit direct construction
of the bubble value. In practice, of course, one simply computes v − V[ez].

4. Miller—Modigliani example

Gilles and LeRoy (1997) present this as the archetypical example of a payout
bubble, where the value is attributable to payouts that occur after every finite
time. We treat the example as an introduction to our approach.

The setup. Take as given the measure space (R+,B(R+),Leb), where R+ = [0,∞],
B(R+) is the set of Borel sets generated by R+, and Leb is Lebesgue measure. Also
take as given the following utility function: U(c) =

R∞
0 e−r ω log(c(ω)) dω, where

r > 0 is the rate of time preference. Marginal utility is given by ∇U(c; z) =R∞
0 e−r ω c(ω)−1 z(ω) dω. Let the endowment be c(ω) ≡ 1, so that π(ω) = e−r ω is
the price system. Since kπkµ1 =

R∞
0 e−r ω dω = 1/r < ∞, the measure ψ is finite

(where the Radon—Nikodym is given by dψ
dLeb = e−r ω). In this setting we have
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vn =
R∞
0 zn(ω) ∂ωΨc(ω) dω, where ∂ωΨc(ω) = e−r ω. Therefore, we can identify

zero-coupon bonds with Arrow—Debreu securities, which are pure bubbles.

The example. Let s(ω) be the amount of capital a firm has at time ω and let
the net earnings of the firm be r s(ω). If a firm pays dividends at the rate z(ω) =
γ r s(ω) with dividend—payout ratio γ ≥ 0, then the change in the firm’s capital is
s0(ω) = (1−γ) r s(ω), which is an ordinary differential equation. For a firm that has
one unit of capital at time zero, the solution to this equation is s(ω) = er (1−γ)ω,
and the dividend stream generated by this firm is z(ω) = γ r er (1−γ)ω. For γ > 0,
the present value of the dividends is

R∞
0 z(ω)π(ω) dω =

R∞
0 r γ e−r γ ω dω = 1. The

value attributable to dividends paid after ω = T is
R∞
T z(ω)π(ω) dω = e−r γ T . Thus,

as γ ↓ 0 the value attributable to dividends paid beyond any finite time goes to one.
Now consider a sequence of dividend streams hzni, where zn(ω) = r γn er (1−γn)ω

and where hγni is any positive, monotonically decreasing sequence that converges
to zero. Obviously, limn→∞ vn = 1. The reader may confirm that hzni is L1(ψ)-
bounded, converges almost surely to zero, and does not converge in norm. Conse-
quently, the value (i.e., marginal utility) of the limiting dividend stream is one; the
fundamental value is zero and the bubble value is one.

The Very-long discount (VLD) bond. Before leaving this economy, we examine the
value of an infinite-horizon zero-coupon bond. Let

zn(ω) =

µ
r er n

1− e−r/n
¶
1{n≤ω≤n+1/n}(ω).

In this example, the payout is a deferred annuity that pays at the fixed rate of
(r er n)/(1− e−r/n) from ω = n to ω = n+ 1/n. Thus n controls the starting date,
the flow duration, and the flow rate. The total flow grows with n and is unbounded
as n → ∞. Once again vn = 1 and again the reader may confirm the sequence is
L1(ψ)-bounded, converges almost surely to zero, and does not converge in norm.
Consequently, the value of the limiting payout is one; the fundamental value is zero
and the bubble value is one.

The VLD bond in a discrete-time economy. The chest-of-drawers illustration
(in the Introduction) is based on this example, which (as noted above) is treated
in the appendix of Gilles and LeRoy (1997). Let Ω = N be the natural numbers,
F = P(N) be the set of all subsets of N, and µ = ν be the counting measure (i.e.,
ν[A] =

P
ω∈A 1 is the number of elements of in A). Note that ν is σ-finite but

not finite. Given this setup, L1(µ) = `1(ν) is the space of absolutely summable
sequences. Let π(ω) = (1 + r)−ω, where r ≥ 0. The Arrow—Debreu securities are
fundamental in this case. Let zn(ω) = (1 + r)ω 1{ω=n}(ω), so that π(ω) zn(ω) =
1{ω=n}(ω) and π zn ∈ `1(ν) for all r ≥ 0. The value of zn is vn =

P∞
ω=1 1{ω=n}(ω) =

1. Using π as the Radon—Nikodym derivative, ψ[A] =
P

ω∈A(1 + r)
−ω. If r > 0,

then π ∈ `1(ν), and ψ[N] = 1/r. Otherwise, π(ω) ≡ 1 and ψ = ν. In any event,
hzni is `1(ψ)-bounded and converges almost surely to the zero sequence. Thus hzni
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has limit points in `1(ψ)∗∗ consisting of pure charges. Letting ϕ denote any of these
limit-point charges, we have ϕ[{ω}] = 0 for every ω ∈ N and v = ϕ[N] = 1.24

5. Stochastic applications

In this section, we adjust the generic setup slightly in order to accommodate
stochastic applications more naturally. First, we assume the µ = P is a probability
measure. Second, we assume there is a payout β for which EP [π β] = 1. Third, we
use π β as the Radon—Nikodym derivative to change to an equivalent probability
measure Q. Thus, the value of a payout zn is

vn =
R
Ω π zn dµ = E

P [π zn] = E
Q[xn],

where dQ
dP = π β and xn = zn/β. Fourth, we assume E

Q[xn] = x0 for all n.
Our arbitrage-related definitions carry over to this setting with the measure ψ

replaced by Q. The central implication is this: No sequence hxni satisfying the four
assumptions generates an arbitrage if h(w) = x0. (Recall h(w) is the cost of w.)
Given the four assumptions, if hxni is L1(Q)-bounded and converges in Q-proba-

bility to ex, then hxni has weak∗ limit points in L1(Q)∗∗, x0 is the value of the limit
points, EQ[ex] is the fundamental value, and x0 − EQ[ex] is the bubble value. Note
that if xn ≥ 0 for all n, then hxni is L1(Q)-bounded.
The doubling strategy. We introduce the doubling strategy in a timeless setting.
Assume the probability space (Ω,F , P ) contains a sequence of events heni involving
the flipping a coin, where

en , the first head occurs on or before the n-th flip.
Define the following random variable (payout):

xn =

(
α if en

α (1− 2n) if not en,

where α > 0 is an arbitrary constant.25 The doubling strategy refers to the limiting
payout as n→∞.
Rather than first specify the price system and the relevant probabilities under

P and then explicitly change measure, we specify the probabilities directly under
Q. In particular, we assume Q[en] = 1 − (1/2)n, so that EQ[xn] = 0 for all n.
Moreover, EQ[|xn|] = 2α (1− (1/2)n) ≤ 2α, which establishes L1(Q)-boundedness

24In the chest-of-drawers example, the fundamental component ez is the zero sequence (all draw-
ers closed), and ϕ is a function that ignores the open/closed status of drawers; it assigns zero
weight to every finite collection of drawers, but assigns the value one to the infinite collection of all
drawers. In other words, (the value assigned to) the whole is greater than the sum of (the values
assigned to) the parts.

25One can imagine generating xn sequentially as the coin is flipped: Make a bet that pays α if
heads occurs on the first flip and pays −α if tails occurs instead. Stop if heads occurs (and keep α);
otherwise borrow α to pay the loss and double the bet to 2α for the next coin flip. Stop if heads
occurs (pay off the debt and keep α); otherwise borrow 3α to payoff the loss and the accumulated
debt and redouble the bet to 4α. Continue this pattern, but stop after the n-th coin flip regardless
of the outcome.



12 MARK FISHER AND CHRISTIAN GILLES

of hxni. In addition, hxni converges in probability to α, but does not converge in
norm. Therefore, the value (i.e., marginal utility) of the doubling strategy is zero;
the fundamental value is α and the bubble value is −α. Thus the limit points are
not in the positive cone of (L1)∗∗; hence the doubling strategy does not present an
arbitrage opportunity.
We can, of course, interpret the sequence of random variables hxni as a stochastic

process (where time is indexed by n) with an initial value x0 = 0. Define the process
stopped at time τ as follows:

xτn , xn 1{n<τ}(n) + xτ 1{n≥τ}(n).
For τ ∈ N, the stopped process hxτni is a martingale. Therefore, hxni is a local
martingale, but not itself a martingale since it does not converge in norm.

Continuous-time finance. We adopt the assumptions in Chapter 6 of Duffie
(1996), to which we refer the reader for omitted details. Take as given a com-
plete probability space (Ω,F , P ), a standard d-dimensional Brownian motion B,
a trading interval T = [0, T ], a filtration F = {Ft : t ∈ T } satisfying the usual
conditions26 and for which FT = F .
Consider the utility function

U(c) = EP
∙Z T

0
u(c(t), t) dt+ uT (cT , T )

¸
and its associated marginal utility:

∇U(c; z) = EP
∙Z T

0
uc(c(t), t) z(t) dt+ u

T
c (cT , T ) zT

¸
.

Suppose uc(c(0), 0) = 1 and uTc (cT , T ) = uc(c(T ), T ). Let π(t) = uc(c(t), t) and
assume π ∈ L2(P ). Thus

∇U(c; z) = EP
∙Z T

0
π(t) z(t) dt+ π(T ) zT

¸
.

Assume there are N ≤ d+1 (basis) securities whose values V = (Vi)Ni=1 ∈ L2(P )N
are Ito processes:

V (t) = V (0) +

Z t

0
µV (s) ds+

Z t

0
σV (s) dW (s),

where σV is an N × d matrix. Assume the cumulative dividend processes for the
basis securities is given by D(t) =

R t
0 δ(s) ds. If π is a state—price deflator, then

Gπ(t) , π(t)V (t)+
R t
0 π(s) δ(s) ds is an L

1(P )N martingale and the basis securities

are priced according to their values: V (0) = EP [Gπ(T )].
Suppose the first security is strictly positive, pays no dividends, and has value one:

V1(0) = 1 = E
P [π(T )V1(T )]. Let Y (t) , 1/V1(t) and define GY (t) , Y (t)V (t) +

26A filtration is said to satisfy the usual conditions if it is right-continuous and F0 contains the
all the P -negligible events in F . See Karatzas and Shreve (1991) for additional information.
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0 Y (s) δ(s) ds. By Girsanov’s theorem, GY is an L1(Q)N -martingale under the

equivalent probability measure Q, where dQ
dP = π(T )/Y (T ). Note (GY )1 ≡ 1.

Let M(t) , Y (t) θ(t)>V (t) be the deflated value of a self-financing trading strat-
egy θ = (θ1, γ), for which

M(t) =M(0) +

Z t

0
γ(s)>dZ(s), (5.1)

where γ = (θi)
N
i=2, Z = (GY i)

N
i=2, and M(0) = θ(0)>V (0) is the initial investment

required by the trading strategy. The self-financing condition (5.1) is maintained
by

θ1(t) =M(0) +
R t
0 γ(s)

>dZ(s)− Y (t)PN
i=2 θi(t)Vi(t). (5.2)

For γ in the class of processes for which the stochastic integral in (5.1) is defined,
M is a local martingale. Therefore there is an increasing sequence of stopping
times τn ≥ 0 such that limt→T τn = T a.s. that reduces M . In other words,
Mn(t) , M(t) 1{t<τn}(t) +M(τn) 1{t≥τn}(t) is a Q-martingale for all n. Note that
Mn(t) = Y (t) θn(t)

>V (t), where

θ1n(t) , θ1(t) 1{t<τn}(t) +M(τn) 1{t≥τn}(t) and γn(t) , γ(t) 1{t<τn}(t) (5.3)

is a self-financing trading strategy. This trading strategy freezes the deflated gain
at τn by investing all proceeds in the first asset, the deflated value of which is
identically one by construction.
We can make the following three identifications: x0 = M(0) (the trading strat-

egy’s initial investment), xn = Mn(T ) (the terminal value of each self-financing
trading strategy in the sequence), and ex =M(T ) (the probability limit of the pay-
offs).27 As such, we have a sequence hxni that converges in Q-probability to ex and
for which EQ[xn] = x0 for all n. Therefore, there are no arbitrages. Moreover, ifM
is L1(Q)-bounded, then hMn(T )i has weak∗ limit points in L1(Q)∗∗; the value of the
limit points is M(0); the value of the fundamental component M(T ) is EQ[M(T )];
and the value of the bubble component is M(0)−EQ[M(T )].
Example: Nonnegative local martingales. Suppose M is a nonnegative local
martingale. As such, it is L1(Q)-bounded. Moreover, it is a supermartingale; thus
M(0) ≥ EQ[M(T )], with strict inequality if and only if the limiting payout contains
a pure charge.
For example, consider the nonnegative local martingale presented by Loewenstein

and Willard (2000):

M(t) = exp

½
−1
2

Z t

0
h(s)2 ds−

Z t

0
h(s) dcW (s)¾ ,

where h(t) = 1/(T − t)3/2 and cW is a scalar Brownian motion under Q. We can
compute the distribution of M(t) conditional on F0. In order to compute this

27For sufficiently integrable trading strategies, hMn(T )i converges in L2, which implies con-
vergence in L1 and in probability. For less integrable trading strategies, stochastic integration is
defined in terms of convergence in probability.
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distribution, first note that log(M(t)) is normally distributed with mean −12 g(t)
and variance g(t), where

g(t) =

Z t

0
h(s)2 ds =

1

2

µ
1

(T − t)2 −
1

T 2

¶
.

Therefore, M(t) is lognormally distributed with the following density:

f(x, t) =
exp

n−(g(t)+2 log(x))2
8 g(t)

o
x
p
2π g(t)

. (5.4)

For 0 < t < T , the mean of the distribution is unity and the variance is eg(t) − 1,
which is unbounded as t → T . The distribution converges in probability to zero
as t → T . The distribution of Mn(T ) = M(τn) is f( · , τn) as given by (5.4).
Consequently, EQ[Mn(T )] = 1 for all n, and therefore the fundamental value is zero
and the bubble value is one.

The doubling strategy in continuous time. For completeness, we treat the
doubling strategy in continuous time.28

Consider the process y(t) ,
R t
0 (T − u)−1/2 dcW (u) for 0 ≤ t < T , where cW is a

standard univariate Brownian motion under Q. Note y is a martingale: EQ[y(t)] =
y(0) = 0; moreover, conditional on F0, y(t) is normally distributed with mean
zero and variance V = EQ[y(t)2] = − log(1 − t/T ). Let 0 < α < ∞ and consider
the stopping time τ = inf{t : y(t) = α}. Since y is a martingale, the stopped
process yτ (t) , y(t) 1{t<τ}(t) + α 1{t≥τ}(t) is a martingale as well; in particular,
EQ[yτ (t)] = 0 for 0 ≤ t < T . We now show that yτ converges in probability to α.
Note Q[|yτ (t) − α| > 0] = 1 − Q[τ < t]. Adapting formula (6.2) of Karatzas and
Shreve (1991, p. 80),

Q[τ < t] = 2Q[y(t) > α] =

r
2

π

Z ∞
αV−1/2

e−x
2/2 dx.

Thus limt↑T Q[τ < t] = 1, and consequently limt↑T Q[|yτ (t) − α| > ε] = 0 for all
ε > 0, completing the demonstration. However, yτ does not converge in the L1

norm since EQ[|yτ (t)− α|] = α for all t < T .

The doubling strategy refers to the process M(t) , yτ (t) for 0 ≤ t ≤ T ,
where M(T ) = yτ (T ). Clearly M is not a martingale (even though yτ is) since
0 = M(0) 6= EQ[M(T )] = α. Nevertheless, M is a local martingale. Define
the sequence of stopping times tn , T (1− (1/2)n) and the stopped processes
Mn(t) , M(t) 1{t<tn}(t) +M(tn) 1{t≥tn}(t). To see that M is a local martingale,

note that (i) limn→∞ tn = T and (ii) E
Q[Mn(T )] = E

Q[M(tn)] = E
Q[yτ (tn)] = 0

28See Duffie (1996, pp. 103—104) for a standard treatment.
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for all n.29 Note hMni is L1-bounded, since EQ[|Mn(T )|] = 2EQ[M(tn)+] ≤ 2α for
all n.30

Therefore, hMn(T )i has limit points in (L1)∗∗, all of which have zero value, the
limit of the expectations. The value of the fundamental component is the expecta-
tion of the probability limit, α = EQ[M(T )], and the value of the bubble component
is the difference, −α = 0− α. Although the fundamental component is in L1+, the
limit points are not in (L1)∗∗+ . Consequently, the doubling strategy is not an arbi-
trage.

Appendix A. Theorems and proofs

Theorems A.1—A.4 collect established results regarding charges and measures.
Theorem A.1 states that ca and pch are orthogonal complements. Theorem A.2
characterizes pure charges. Theorems A.3 and A.4 establish the links between the
space of charges and the space of bounded linear functionals on L∞ and between
the space of signed measures and the space of integrable functions.

Theorem A.1 (Yosida—Hewitt). Any charge ξ ∈ ba can be expressed as ξ = ρ+ϕ,
where ρ ∈ ca and ϕ ∈ pch are unique.
Proof. See Bhaskara Rao and Bhaskara Rao (1983, 10.2.1, p. 241). ¤
Theorem A.2. A bounded charge ϕ is a pure charge on F if and only if for every
bounded measure ρ on F and ε > 0, there exists A ∈ F such that

ϕ[A] = 0 and ρ[Ω \A] < ε.

Proof. See Bhaskara Rao and Bhaskara Rao (1983, 10.3.3, p. 244). ¤
Theorem A.3. There exists an isometric isomorphism between L1(Ω,F ,ψ)∗∗ and
ba(Ω,F ,ψ) determined by

w · f = RΩ f dξ
where w ∈ L1(Ω,F ,ψ)∗∗, f ∈ L∞(Ω,F ,ψ), and ξ ∈ ba(Ω,F ,ψ).
Proof. See Dunford and Schwartz (1958, IV.8.16, p. 296). ¤
Theorem A.4 (Radon—Nikodym). The identity

ρ[A] =
R
A ez dψ for A ∈ F (A.1)

determines an isometric isomorphism between ca(Ω,F ,ψ) and L1(Ω,F ,ψ) whereez ∈ L1 corresponds to ρ ∈ ca.
29In a complete market, there is a self-financing trading strategy that replicates M(t) for t ∈

[0, T ]. For example, consider the Black—Scholes world where V is the value of the stock. For

simplicity, assume β = π = 1, which implies P = Q. Additionally assume dV = V dcW with
V (0) = 1. The self-financing trading strategy (for which θ1 + θ2 V = M) is given by θ1(t) =R t
0
θ2(u) dV (u) − θ2(t)V (t) as per (5.2) and θ2(t) =

¡
V (t)

√
T − t¢−1 1{t<τ}(t). The sequence of

the self-financing trading strategies that replicate hMni is given by (5.3).
30Define f+ , max[f, 0] and f− , −min[f, 0]. Clearly, f+, f− ≥ 0. Note f = f+ − f−

and |f | = f+ + f−. Therefore, if hR f+n dµi and hR fn dµi are bounded, then hfni is L1-bounded.
Moreover, if fn = f

+
n or fn = f

−
n and if hR fn dµi is bounded, hfni is L1-bounded.
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Proof. See Dunford and Schwartz (1958, III.10.2, p. 176). [Note: The payout ez in
(A.1) is the Radon—Nikodym derivative of ρ with respect to ψ: dρ

dψ = ez.] ¤
Theorem A.5 characterizes the relation between almost sure convergence and

convergence in measure on the one hand and the fundamental component on the
other. As far as we know, Theorem A.5 is new.

Theorem A.5. Let (Ω,F ,ψ) be a positive, finite measure space, hzαi ⊂ L1 a
net weak∗ converging to w ∈ (L1)∗∗, ξ ∈ ba corresponding to w, and ξ = ρ + ϕ,
with ρ ∈ ca and ϕ ∈ pch (the Yosida-Hewitt decomposition of ξ). Let ez denote
the element in L1 corresponding to ρ. Then ez is both (a) the limit of hzαi in the
topology of convergence in measure, and (b) its only limit point in the topology of
almost-sure convergence.

Proof. Note first that hzαi converges to ξ if and only if hzα − ezi converges to ϕ, so
that we can suppose that ρ = 0 (and thus ez = 0). Second, hzαi converges to ϕ if
and only if hz+α i converges to ϕ+ and hz−α i converges to ϕ−, so that it is sufficient
to consider the case where hzαi is a positive net converging to a pure charge.
Because ϕ is a pure charge, ψ is finite, and ϕ vanishes on sets of ψ-measure zero,

there exists a sequence hAni ↑ Ω where An ∈ F such that ϕ[An] = 0 for all n
(Bhaskara Rao and Bhaskara Rao 1983, Theorem 10.3.3).
By definition, hzαi weak∗ converges to ϕ if and only if hRΩ f zα dψi converges

to
R
Ω f dϕ for all f ∈ L∞. In particular, using the test function 1An , h

R
An
zα dψi

converges to
R
An
dϕ = ϕ[An] = 0. Therefore, for any ε > 0 there exists α such that

β > α implies ψ[{ω ∈ An : zβ(ω) > ε}] < ε/2. Choosing n such that ψ[Ω\An] < ε/2,
we conclude that, for sufficiently large β,

ψ[{ω ∈ Ω : zβ(ω) > ε}] < ε/2 + ψ[{ω ∈ An : zβ(ω) > ε}] < ε.

In other words, hzαi converges in ψ-measure to 0, which proves (a). To get (b),
note that there is a subnet converging to ez almost surely (see, e.g., Royden (1988,
p. 95).), so that ez is a limit point of hzαi. Since almost-sure convergence implies
convergence in measure and all subnets converge in measure to ez, there cannot be
any other almost-sure limit point. ¤
Theorems A.6—A.10 deal with the convergence of sequences hzni of payouts. These

theorems are either well-known or trivial.

Theorem A.6. If hzni is a sequence in L1(ψ) with zn ≥ 0, then hzni is L1-bounded
if and only if hV[zn]i is bounded.
Proof. Since zn ≥ 0, kznkψ1 = V[zn]. ¤
Theorem A.7. If a sequence is bounded in L1, then it has weak∗ limit points in
(L1)∗∗.

Proof. The unit ball of L1 is contained in the unit ball of (L1)∗∗. By Alaoglu’s
theorem, the unit ball of (L1)∗∗ is weak∗ compact. ¤
Theorem A.8. Given an L1(ψ)-bounded sequence hzni, if v = limn→∞ V[zn] exists,
then the value of the limit points is v.
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Proof. This follows from the definition of weak∗ convergence. ¤

Theorem A.9. Given an L1(ψ)-bounded sequence, if the sequence converges in
measure to ez, then the fundamental component of the limit points is ez ∈ L1(ψ) and
the fundamental value of the limit points is V[ez].
Proof. This is a consequence of Theorem A.5. ¤

Theorem A.10. If a sequence in L1 converges in the norm topology, then the bubble
component of the limit point is zero.

Proof. A convergent sequence in L1 is a convergent net in (L1)∗∗. ¤
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