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1. INTRODUCTION

The Nobel Prize for economics was shared this year by Robert Merton and Myron
Scholes for their contributions to option pricing theory.! Had Fischer Black lived,
he too would have shared the prize for the work cited by the prize committee.
Since the early 1970s when Black and Scholes published their now famous option
pricing model? and Merton published his extensions of their model, there has been
a remarkable unification of a variety of strands of asset-pricing theory. This note
tries to provide some insight into the theory of asset-pricing that their seminal work
inspired and the unified theory that has evolved.

Black and Scholes applied the notion that “you can’t get something for nothing”
(which is known more formally as “the absence of arbitrage opportunities”) to solve
the problem of finding the rational option price. Earlier, Franco Modigliani and
Merton Miller (each of whom has won the Nobel prize on different occasions) had
used arguments based on the absence of arbitrage opportunities to show that, absent
taxes and transaction costs, the value of a firm is independent of its capital structure
(i.e., whether the firms finances its operations with debt or equity is irrelevant). Of
course there are taxes and transaction costs, but the Modigliani—Miller propositions
help us to focus on what’s going on by clearly showing us what’s not going on.

Early attempts to derive a comprehensive theory of asset pricing typically in-
volved modeling investors’ attitudes toward risk and return. Black and Scholes
initiated the investigation of the consequences of conditions that ensure there are
no arbitrage opportunities. Although this approach seems quite superficial by com-
parison, an intimate relationship between the two approaches was later discovered.
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In fact much can be learned about preference-based models from preference-free
absence-of-arbitrage conditions.*

I will describe asset pricing in a simple setting. There are only two points in
time to consider: right now and one year from now (the future). In the future there
are only two possible states of the world. The simple binomial structure of the
model was first introduced by William Sharpe (also a Nobel prize winner) in the
first edition of his undergraduate-level textbook Investments.

In this simple setting, we assume that there are no taxes or transactions costs.
These assumptions are in some sense unrealistic of course, but if we cannot under-
stand how the world works without frictions it is doubtful that we can understand
how it works when they are present.

2. A STOCK, A BOND, AND NO ARBITRAGE

A stock and a bond. We start with two financial assets: a risky stock and a
risk-free bond. The value of a risk-free bond right now is Byow, and in one year the
value will surely be (1 + 7) Byow, wWhere r is the risk-free interest rate. The value
of the stock right now is Spow. In one year, there will be two possible states of the
world: the value of the stock will either be Sy, or Sqown, Where

0 < Sdown < Snow < Sup < 0.

Let the probabilities that the stock price goes up or down be given by p,, > 0 and
Pdown > 0, where pup + Pdown = 1. For now, we will not be any more specific about
the values of the probabilities.

Portfolios. Consider buying the stock on margin: i.e., borrowing money to buy
stock. In our setting, borrowing money means selling bonds. We form a portfolio
by buying (right now) x shares of the stock simultaneously selling y bonds. The
cost of our portfolio is the net outlay right now, the cost of the shares of stock less
the total amount borrowed,

6w = 2 Snow — anow.

How much will our portfolio be worth in one year? We will sell the stock and
receive either x Sqown Or = Syp, but we will have to repay our loan with interest,
Yy (147) Bhow. Thus, depending on whether the stock goes down or up, our portfolio
will be worth either

Hdown = deown -y (1 + 7”) Bnow
or
HUP =T Sup -y (1 + 7") Bnow-

*In a later version, I will expand on early work done by Samuelson (i.e., before Black, Scholes, and
Merton) and general equilibrium asset pricing by Lucas (both Nobel prize winners).
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Arbitrage opportunities with the stock and the bond. An arbitrage is a
trading strategy that produces something for nothing. In our simple setting, a
trading strategy is nothing more than a portfolio of the stock and the bond where
we choose the portfolio weights once and for all, but in a more realistic setting it
could involve changing the portfolio weights over time in response to movements in
the stock price. Suppose for example we could form a portfolio that cost nothing
today and guaranteed a positive payoff in all future states of the world. That would
be an arbitrage. (In fact, even if it only had positive payoffs in some states it
would still be an arbitrage—as long as it didn’t have any negative payouts. This
would be like free insurance against the occurrence of those states of the world.) An
alternative arbitrage would be a trading strategy that generated something right
now but required no payouts under any circumstances next year.

Consider the first sort of trading strategy in more detail: Buy one share of stock
and borrow money to finance the entire cost, putting no money down. In this case,
x =1 and y = Show/Bnow, Which makes the outlay today zero:

Sl’lOW
BHOW

Now consider the payoffs. Given our portfolio weights, the trading strategy will
payoff either

Hnow =T Snow - anow - Snow - ( > Bnow =0.

I 35wn = Sdown — (1 + 7") Show (213)
or
Hup = Sup - (1 + 71) Snow- (21b)

If both payoffs are positive (or if II,, > 0 and IIjown > 0), then we have an
arbitrage—something positive later (a positive payoff in at least one state of the
world next year with no negative payoffs) for nothing today. On the other hand,
if both payoffs are negative (or if ITy, < 0 and Iljown < 0), then there is a dif-
ferent arbitrage—simply change the sign of our portfolio weights, x = —1 and
Y = —Snow/Bnow- (These portfolio weights correspond to selling the stock short
and lending the proceeds.)

Therefore, in order to ensure the absence of arbitrage opportunities involving the
stock and the bond, we require that Iljouwn < 0 and II,, > 0, so that one would
face the possibility of losing money no matter which trading strategy one adopted.
Given (2.1), we can write these conditions as

Sdown < (14 7) Snow < Sup- (2.2)

In other words, the certain rate of return on the bond lies between the low and the
high rates of return for the stock:

Sdown _ o Dy

SHOW SHOW
These conditions guarantee that neither the stock nor the bond dominates the other
security (in the sense that the return on one security is greater than the other in
all states).
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3. PuTs, CALLS, AND FORWARDS

In this section we will examine call options, put options, forward contracts, and
put—call parity.’

Call option. The payoffs for—and therefore the value of—a derivative security are
determined by (i.e., derived from) the value of something else, called the underlier.
The classic example of a derivative security is a call option. A call option is a
contract between the option holder and the option writer that gives the holder
the right to purchase a pre-specified number of shares of the underlier for a pre-
specified amount (the strike price) on a pre-specified date (the expiration date) from
the option writer. In other words, the holder has the right to call the underlier from
the writer. (What I have described is a Furopean call option. An American call
option gives the holder the right of early exercise, the right to exercise anytime before
the expiration date as well.) If the value of the underlier is less than the strike price
on the expiration date, we say that the option finished out of the money. Because
the option holder is not required to exercise the option, the holder will allow the
option to expire unexercised in this case and the payoff will be zero. On the other
hand, if the option finishes in the money, the holder will exercise it, pay the strike
price, and receive the underlier which is worth more. Since the holder can now sell
the underlier for its market value, the option’s payoff in this case is the difference
between the value of the underlier and the strike price.

We will assume that a call option is written on one share of stock. If the strike
price for the option is K¢, then the payoffs for the call option in general are deter-
mined by

maX(Sexpiration - K¢, 0)7

where the function max(z,y) returns the maximum of  and .5

We will examine the value of a call option on the stock in our simple setting. We
want to find the price of the call option right now, Cloy. First we need to determine
the payoffs for the call:

C’down = maX(Sdown - KC> 0)
Cyp = max(Syp, — K¢, 0).

If Ko > Sup, then Cyp = Cgown = 0, which is not very interesting. To keep things
interesting let

Sdown < Ko < Sup. (3.1)

For example, we could have an at-the-money call where Ko = Show. The payoffs
for the option in one year are easy to compute given the stock price one year from
now. If the stock price goes down the option is worth nothing, but if the stock price

5Also talk about valuing corporate debt by treating equity as a call option, FDIC insurance by
treating the bank as having a put option, and portfolio insurance.
6The function max(x,0) is often written as (z)T.
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goes up the option is worth S, — K¢

Cdown = maX(Sdown - KC’; O) =0
Cyup = max(Syp — K¢,0) = Syp — Ko > 0.
Delta hedging. The delta of an option measures how much the value of the option
changes per unit of change in the stock price. In our setting, this amounts to
Cup - C'down _ Sup - KC
Sup - Sdown Sup - Sdown

Ac =

Delta hedging tells us how to form a portfolio of the stock and the call option to
eliminate the risk of the portfolio. If we buy A¢ shares of the stock and sell one
call, the combined payoffs will be the same in each state:

Sup AC’ - C'up = Sdown AC
Sdown AC’ - Cdown = Sdown AC-
Thus we have formed a risk-free portfolio, which cost Spow A — Chow. The absence

of arbitrage requires that this portfolio earn the risk-free rate. In other words we
must have

(1 + 7") (Snow AC - C’now) = Sdown AC’-
We solve this equation for the arbitrage-free price of the option:
((1 + T) Snow — Sdown) Ac
1+r
((1 + T) Snow - Sdown) (Sup - KC)
(Sup — Sdown) (1 +7)

Note that since we don’t know what the probabilities of the up and down states are,
we don’t know what the expected return on the stock is. Even so, we have been
able to figure out the price of the call.

Cnow =

Put option. A put option is similar to a call option except that is confers to the
holder the right to sell the underlier to the writer at the strike price (to put it to
him). Let the strike price for the put option, Kp also be between Sqown and Syp.
For the put, the payoffs are given by
Pdown = maX(KP - Sdowm 0) = Kp— Sdown >0
P,p = max(Kp — Syp, 0) = 0.

We can use delta hedging to solve for the put price right now, P,ow. In this case

Pup - Pdown _ _(KP - Sdown)
Sup - Sdown Sup - Sdown

Ap =

Notice that the delta for the put is negative. If we buy one put and sell Ap shares
of the stock (since Ap is negative, this means buying shares of the stock), the
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combined payoffs will be the same in each state:
Py — Sup Ap = —=Sup Ap
Pdown - Sdown AP - _Sup AP-

Again, the absence of arbitrage requires that risk-free portfolios earn the risk-free
interest rate,

(1 + T) (Pnow - Snow AP) = _Sup AP>
which delivers the value of the put right now:

(Sup - (1 + T) Snow) (KP - Sdown)
(Sup - Sdown) (1 + 7”) ’

PHOW:

Forward contract. A forward contract is an agreement through which the short
agrees to deliver the underlier to the long in exchange for the forward price (Kg) on
the delivery date. On the delivery date, the long pays K and receives the underlier,
which is worth either Sy, or Sgown. Thus, the payoffs for the long are

Fdown = Sdown _KF <0
Fup:Sup—KF > 0.

Since no money changes hands at the inception of a forward contract, its value
at inception must be zero. In fact, the forward price is set to make the value of a
forward contract zero. Clearly, a forward contract is not an option, since some of its
payoffs are negative. Nevertheless, we will see how to construct a forward contract
out of options. The delta for the forward contract is

AF _ (Sup _KF) - (Sdown _KF) —1

Sup - Sdown

If we buy one share of stock and sell one forward contract, then the payoffs for the
portfolio are

Sup - Fup = KF
Sdown - Fdown - KF;
and therefore the return on the portfolio must equal the risk-free rate:
(1 + 7') (Snow - Fnow) = KF

Now here’s the twist: Instead of taking the forward price (Kr) as given and solving
for Frow, we set Fhow = 0 and solve for Kpg:

Kp = (1+7) Snow- (3.2)

Equation (3.2) gives the forward price. Recalling the absence of arbitrage condition
for the stock and the bond (2.2), we see that this condition amounts to requiring
that the forward price for the stock lie between Sqown and Sy, (é.e., within its
support).
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Put—call parity and synthetic forwards. There are definite relationships among
these three derivative securities. We can synthesize a forward contract by (¢) buying
a call option with strike price K¢ = K, (i) selling a put option with the same
strike price Kp = K, and (i) borrowing the money to pay the net cost right now
Chow — Paow- The payoffs to this portfolio look like the payoffs to a forward contract:

Hiown = Cdown — Paown — {(1 + 7’) (Cnow - Pnow)}
- Sdown - KF
and
Hup = C(up - Pup - {(1 +T> (Cnow - Pnow)}
= Sup - KF,

where the synthetic forward price K equals the common strike price on the options
plus the loan repayment:

Kp =K+ (1 + T) (Cnow - Pnow)- (3'3)

Now recall from (3.2) that Kp = (1 + ) Snow- We can substitute this expression
into (3.3) and solve for the call price:

K
Cnow = Pnow + Snow - m (34)

Equation (3.4) is known as put—call parity.

4. DERIVATIVE SECURITIES AND NO ARBITRAGE

Now consider any security whose payoffs one year from now depend only on
whether the stock price went up or down. We call such a security a derivative
because its value is derived from the value of the underlier (the stock, in this case).
Suppose the payoffs of the derivative in one year are Dyown if the stock price goes
down and D, is the stock price goes up. For now we will consider a general
derivative security whose payoffs are not explicitly linked to the underlying stock.”

The central point of pricing derivatives is this. If we can replicate the payoffs of
the derivative using a portfolio of the stock and the bond so that D, = II,, and
Dyown = Iaown, then the price of the derivative right now must equal the price of
the replicating portfolio right now:

Dhow = Ilhow = T Snow — Y Brow- (41)

Otherwise there would be arbitrage opportunities involving the stock, the bond, and
the derivative security. For example, if Doy < Il0w you could buy the derivative,
“sell” the replicating portfolio, and pocket the difference. Because the portfolio
replicates the payoffs of the derivative, you know for sure that you will not have
any net cash flows next year. Therefore you got something today for nothing later.

Now let’s see how to replicate the derivative’s payoffs. We must choose x and
y in order to guarantee that the portfolio identically replicates the payoffs of the
derivative security in one year. (Of course, the values of x and y will be different

"We are pursuing non-Markovian representations here.
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for different derivative securities.) In order to replicate the payoffs of the derivative,
the portfolio weights,  and y, must satisfy

Ddown =T Sdown -y (1 + 7’) Brow (423)

and
Dyp =z Syp — Y (1 4+ 7) Bnow- (4.2b)
Equations (4.2) comprise two equations in the two unknown portfolio weights, z
and y. The solution to (4.2) is
Dup - Ddown
Sup - Sdown
y = Dup Sdown - Ddown Sup
(Sup - Sdown) (1 + T) Brow

With these values for x and y, the value of the derivative security right now must

be the value of the portfolio right now. In other words, insert the values for z and
y in (4.3) into the expression for Doy in (4.1):

xr =

(4.3)

Dyow = = Snow — ) Brow
_ Dup - Ddown IS . Dup Sdown - Ddown Sup B
Sup - Sdown o (Sup - Sdown) (1 + T) Bnow now (443“)
_ ﬁup Dup + pdown Ddown
1+4+r

)

where

. (1 + 7") Snow - Sdown

Pup = Sup — Sdown (44b)
ﬁdown =1- ﬁup

Before we try to interpret the solution (4.4) in detail, first consider the value of
a very simple security that is closely related to the bond we have already modeled.
Consider a zero-coupon bond. A zero-coupon bond pays one unit with certainty
when it matures, which in our example is one year from now. Since for a zero-
coupon bond Dy, = Dgown = 1, our formula tells us that Dyow = 1/(1 4+ 7). This
is known as the present value of one dollar to be paid one year from now with
certainty.

Now let’s turn to interpreting the solution given in (4.4). Now notice that condi-
tion (2.2) guarantees that p,p > 0 and paown > 0. Also notice that pup + Pdown = 1.
These properties allow us to treat pup and Paown as if they were probabilities. Given
this treatment, we can interpret the value of the derivative right now, Doy, as
the present value of its average payoff, where we are using pup, and Pqown as the
probabilities in the average. But note that these probabilities are not the actual
probabilities that the stock goes up or down in value in the real world. These are
pseudo probabilities that have been constructed purely from the dynamics of asset
prices. (We will examine the relationship between these pseudo probabilities and
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the real-world probabilities below.) Now we can write the solution as

D
Dnow = 1 —T-Vi7 (45&)
where
Davg - ﬁup Dup + ﬁdown Ddown- (45b)

We will call equation (4.5) the pricing formula.

The pricing formula applies to all assets, including the stock itself. In this case,
of course, Dy, = Sup and Dgown = Sdown- And, of course, the pricing formula
delivers the correct answer: Dyow = Show-

Let’s rearrange the pricing formula as follows:

ﬁavg — Dnow = 7 Dhow- (46)

Equation (4.6) says that the expected change in the value of the asset—calculated
using the pseudo probabilities—equals the current value of the asset times the risk-
free interest rate. If D,y is positive (it need not be) then we can write

Davg
Drow

Equation (4.7) shows that the average return for any security with a positive value
right now—calculated using the pseudo probabilities—is the risk-free interest rate,
regardless of the perceived risk of the security. Hence these pseudo probabilities
are often called risk-neutral probabilities, and equation (4.5) is often referred to as
risk-neutral pricing.

There is another way we can think about our pricing formula. Divide the price
of the derivative security right now by the price of the bond right now and divide
the payoffs of the derivative security next year by the payoff of the bond next year.
Let

—1=r (4.7)

Drow 7 Dup Ddown

a5 up — 7T N5 T N5

Brow (1 + T) Brow (1 + T) Brow

We refer to these Z values as the deflated values of the derivative security. Using

these deflated values, we can rewrite our pricing formula in the following extremely
compact way:

Zow = and  Zgown =

Znow = Zayg- (4.8)

Pricing formula (4.8) says that the value of deflated security right now equals the
average value of deflated security next year. Anything with the property that its
future average value equals its current value is called a martingale, and so formula
(4.8) is known as the martingale pricing formula. Of course, formulas (4.4), (4.5),
and (4.8) are all equivalent: They simply say the same thing in different ways.®

8Tt turns out that the solution to many problems in physics can be expressed exactly as formula
(4.8). Also Feynman—Kac in a Markovian setting.
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Arrow—Debreu securities and state prices. Now consider two fundamental se-
curities from which all other securities can be easily constructed. These are known
as Arrow—Debreu securities. Kenneth Arrow and Gerard Debreu each independently
thought up these securities. (And each won the Nobel prize in Economics indepen-
dently.) The first security pays one unit if the stock goes up and nothing if the
stock goes down, Dy, = 1 and Dgown = 0, while the second one pays nothing if the
stock goes up and one unit if the stock down, Dy, = 0 and Dgown = 1. The prices of
these securities are called state prices since they measure the price of a unit payoff
in each state. From (4.5) we can see that the two state prices are

DPup DPdown
T and T (4.9)
As mentioned above, the Arrow—Debreu securities are the building blocks out
of which all securities can be constructed. Since the stock’s payoffs are Sy, and
Sdown, the value of the stock right now must be Sy, times the up-state price plus
Sdown times the down-state price. Note that if all state prices are positive, one can
never get something for nothing. In fact, our absence-of-arbitrage condition (2.2)
is nothing more than the condition required to guarantee all the state prices are
positive.

Complete markets. We have been working in an economy with a complete market.
What this means is that we have enough securities (with independent returns) to
form portfolios that can pinpoint every Arrow—Debreu security. If instead, we had
only the stock and no bond, then we would have an incomplete market, and we
would be unable to uncover the state prices using the securities available. Pure
absence-of-arbitrage could not tell us how to price all claims that might occur.
Nevertheless, we can still apply general equilibrium asset pricing, which we discuss
in detail below.

Extracting the pseudo probabilities with option prices. We can use put
prices to extract the pseudo probabilities. Consider two put options with different
strike prices, K 113 and K]%, where both strike prices are between the two possible
stock prices: Sqown < K}; < Sup- The price of these puts is given by

_ ﬁdown (KfD - Sdown)

Priow - 1 Ly
We can use these two put prices to extract the probability:
p2 — pl
(1 +T) ( nOVQV n10W> = Pdown-
Ky — Kp

If we apply this formula where K% < Sgown We get 0, and if we apply it where
K}; > Sgown We get 1. The reader with a background in probability will recognize
that we can trace out the cumulative distribution function (CDF) for the pseudo
probabilities this way. Moreover, if we had a continuous state space with a differ-
entiable CDF, then we could recover the pseudo probability density function with
0? P/OK? (or —0?C/0 K?). There is a small industry today actively involved in
doing just that.
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Risk, return, and the price of risk. We have been able to solve for asset prices
without referring explicitly to risk or return. Yet in an important sense the relation
between risk and return is central asset pricing. In this section we will make explicit
the implicit relation embedded in the conditions for no arbitrage.

First, we must define what we mean by risk and return. Using the true proba-
bilities, which we now assume are (%, %), the average value of a asset’s payoffs next

year is

Dup + Ddown

Dan = Pup Dup + Pdown Ddown = 5
One measure of the risk of the asset is the volatility of its payoffs:

Du _Ddown
Dvol — (Dup - Ddown) v/ Pup Pdown = p#

The variance of the return in its payoffs is given by

Dvar = Pup (Dup - Davg)2 + Pdown (Ddown - Davg)2

_ (Dup - Davg)2 + (Ddown - Davg)2
5 .

The standard deviation of its payoffs is given by

Ddev =V Dvar = ’Dvol|7

where |z| denotes the absolute value of z. For those assets whose value is positive,
Dyow > 0, we can write (4.11) in terms of returns. Define the returns on the asset
as follows:

D Daow
— 1 and ddown:ﬂ—l.

Ay =
P Dyow Dyow

Then it is easy to show that

D D
davg = Dan and dvol == D—VOI.
now now

If we have two positive securities, D and M, we can find the covariance between
their returns: The covariance between the two returns is given by

1 1

COVm,d =3 (mup - mavg)(sup - 5avg> + = (mdown - mavg)(sdown - Savg)

2 2

= Mol dyol-

We want to write the expected change (i.e., average change) in the asset’s value,
Dayvg — Drow, in terms of its risk, Dyo. What we know so far is given by (4.6). What

we need to know now is the relationship between D,,, and ﬁavg. The difference
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between the two turns out to be the risk premium. We can see as follows:

A 1 . 1 N
Dan - ‘Dan = <§ - pup> Dllp + <§ - pdown) Ddown

1
( - pup) up + <pup 2) Ddown
4.10a
( pup Ddown) ( )
-D own
= (1 = 2Pup) ( ! >
=A Dv017
where

A=1—2pup (4.10b)

is the price of risk. (We will give some meaning to this phrase below.) Notice that
A does not depend on Dyow, Dyp, or Dgown in the following sense: In a complete
market with no arbitrage opportunities, we will get the same value for A no matter
which derivative security we choose.

Combining (4.6) and (4.10) produces the result we are looking for:

D.yg — Dnow = 7 Dyow + A Dyl (4.11)

Equation (4.11) says that the average change in the value of an asset—any asset
including the stock and the bond—equals the sum of two parts: One part is a reward
for waiting, 7 Dyow, and the other part is a reward for bearing risk, A Dy, . For an
asset with zero value right now (for example, the value of a forward contract, which
as we saw above, is zero at its inception), the expected change in the asset’s value
equals its risk premium. For assets with a positive value today, we can write (4.11)
as

ovg =7 + Adyol. (4.12)

Solving (4.12) for A\, we see that the price of risk is the risk premium per unit of
risk:

daye — T
A= e T
dvol

The Radon—Nikodym derivative. What’s the relationship between the real probabil-
ities and the pseudo probabilities, pup and Paown? Since Pgown = 1 — Pup, We focus
on Pup. We can solve (4.10b) for pyp:

1 A

b = — — = 413

Since we must have 0 < pyp < 1, this means that we must have —1 < A < 1. (In a
more general setting, A would not be restricted to this range.) We see that if A = 0,
then pyp = %, the real world probability. The ratio of pseudo probabilities to real
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probabilities is known as the Radon—Nikodym derivative. Using the expression for
A, we can write these ratios as

dQ) Pup _ Pup
(dP up  Pup 1/2

~ 1_ Au
@ :pdown: pp:l—i—)\.
dp down deWl’l 1/2

Q) _ 4oy _ _
<ﬁ>avg1 and (dp>vol *

Note that since the probability that we are where we are right now is one regard-
less of how we choose to measure the probabilities of future outcomes, we have
(%)now = 1. So we see that (%) is a martingale with (relative) volatility equal to
the negative of the price of risk:

dQ dQ o (%)Vol _
(ﬁwg‘(ﬁ)nw“ wd gy TN

dP ) now

We see that

State—price beta models and the deflator asset. We will consider a special asset,
that has a positive value right now, M., > 0. We can consider its returns, my,
and Mqown. Now suppose that the volatility of its return equals the price of risk,
myol = A. Equation (4.12) says that for this asset mayg = 7 + A?, where A\? is the
variance of this return for this asset. We can solve these two equations for m,, and
Mdown-

Mup =r+ XN+ X and mgown =7+ A2 — \.

We call this special asset the deflator asset.
Using mayg =7 + A2, we can write

)\dvol = )‘dvol <M>

2
Adyol 4.14
:( )\2 )(mavg—T) ( )
- ﬂd (mavg - T) ,
where
Adyo
Ba = 2 L
Combining (4.12) and (4.14) produces
davg — T = Ba (Mavg — 7). (4.15)

Note that X\ dy) is the covariance between the asset’s returns and the deflator asset’s
returns. What all of this says is that the absence of arbitrage implies that the excess
expected return for an asset (i.e., its risk premium), dayy — 7, is “determined” by
the covariance of the asset’s returns with this special asset (scaled by the variance
of the special asset).
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One of the drawbacks of our simple setup is that we cannot make the covariance
between the returns on two assets zero without making one or both of the standard
deviations zero. In a richer setting where we can do that, it is possible to have
assets that are quite risky in the sense that their standard deviations are large, but
have no risk premium because their returns are uncorrelated with the deflator asset.
Gold mining stocks are a classic example of such an asset: large standard deviation
of returns, small risk premium.”

Under some conditions the special asset will turn out to be the market portfolio,
which has often been interpreted to mean something like the NYSE index. In this
case (4.14) is the famous Capital Asset Pricing Model (CAPM), for which Sharpe
and Lintner won the Nobel price:

davg —Tr= 5(1 (mavg - T) . (416)

Numeraire invariance, trading gains, and the state—price deflator. In this
section we consider changing the units in which prices and payoffs are measured.

A numeraire is a unit of measurement. For example, we could measure prices
and payoffs in terms of U.S. dollars or in terms of French francs or in terms of
bushels of wheat. The only thing we require is that the value of the numeraire
always stay positive. The numeraire invariance theorem says a trading strategy is
an arbitrage in terms of one numeraire (one way of measuring things) if and only if
it is an arbitrage in terms of any other numeraire. This means that if there are no
arbitrage opportunities in one numeraire, then there are no arbitrage opportunities
in any numeraire. We will look for a numeraire that makes it easy to verify that
there are no arbitrage opportunities.

In order to change the numeraire, we use the exchange rate between the old and
new numeraires. (Technically, this is called a deflator.) For example, if we wished
to change from dollars to francs, we would use the dollar—franc exchange rate to
convert. Or if we wished to change from dollars to bushels of wheat, we would use
the number of bushels of wheat per dollar. Let us use an exchange rate to change
from one (arbitrary) numeraire to another (arbitrary) numeraire. Let the value of
this exchange rate now and next year be given by Y,ow > 0, Y, > 0, and Ygoun > 0.
In terms of the new units, the value of the asset and its payoffs are given by

DY

now

Y Y
= Ynow Dnowa Dup = Yup Dupv and Ddown = }/down Ddown~

Let’s check to see that using a deflator to change the numeraire doesn’t affect
whether a trading strategy is an arbitrage or not. Suppose we had a trading strategy
that cost nothing right now, so that Dy = 0; after deflation D) = 0 too. If all
the payoffs are positive (or negative) before deflation, then they are all positive (or
negative) after deflation. The point is that changing the units in which asset prices
and their payoffs are measured doesn’t change the sign of anything. And since
arbitrages are essentially about signs, changing the units doesn’t make arbitrage

opportunities either appear or disappear.

9An appendix with three states, two risky assets, and a bond?
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We can state the conditions for the absence of arbitrage opportunities in terms
of average deflated trading gains, which are defined as follows:

Y Y
Davg - Dn()wv
where D}lf,g = (DXP—FD:{OWH) /2 (using the true probabilities). If there is a numeraire
that makes the average deflated trading gains equal zero (denote it Y*),
Y+ y*
Davg - D, . =0, (4.17)

for all assets, then there are no arbitrage opportunities. The exchange rate that
does the trick, Y*, is called the state—price deflator. This way of stating the absence-
of-arbitrage condition focuses directly on the definition of an arbitrage. It says that
if you pay nothing today (so that DY_ = 0) then on average you get nothing back,
which means that if you get positive payoffs in some states of the world, you must
be getting some negative payoffs too—hence no arbitrage. It also says that if you
form a portfolio that produces a positive amount today (which means that the price
of the portfolio is negative), then on average you will have to make payments next
year—hence no arbitrage.

We may wonder just what units are these that make trading gains martingales
and ensure the absence of arbitrage opportunities. As I will discuss below in the
section on equilibrium pricing, we can always interpret these as units of “additional
happiness.”

Let’s examine this version of the absence-of-arbitrage condition, equation (4.17):

Yrikow Dnow = Pup (YJp Dup) + Pdown (Yd*own Ddown)7

which we can solve for D ow:

1/Y 1/Y:
Diow = 4 = P D — [ 2down ) L Do 4.18
o= {3 (732 )} P {3 (S )} P (429

Comparing this expression with (4.5), we see that

Yu*p — 1 @ and Yd*own — 1 1- ﬁup

Y, 14+r\1/2 Y o 147 1/2 )
Let’s examine the average “return,” yj,,, and volatility of the “return,” y;,, for the
state—price deflator:

1 1
P £ , 4.1
yavg r (1 n T’) and Yvol A (1 n T’) ( 9)

In a continuous-time setting, these expressions simplify to —r and —\ respectively.
In addition, in continuous time, the deflator asset equals the inverse of the state—
price deflator, M = 1/Y™*. Instead, in our simple setup the expected return and
volatility of the inverse of the state—price deflator are, respectively,
2
r+A” a2
1— )2 1— )2

We see in (4.19) that the dynamics of the state—price deflator depend only on the
short rate, r, and the price of risk, A. This is quite general. Moreover, this suggests
a powerful and flexible modeling strategy: Assume the existence of the state—price
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deflator and model the dynamics of the short rate and the price of risk. One is free
to model them any way one chooses, subject only to the existence of the solution
to the stochastic (in continuous time: differential) equation.

[Be more specific about (4.19). Relate this to the stochastic process appendix.
Point the following out: This is the most powerful representation to arise in asset
pricing. This is the essence of asset pricing.]

Markovian setting. Now let’s model the explicit dependence of an asset’s payoffs
on the value of the state variables. In other words, we will think of D, as an
unknown function of state variables. The absence-of-arbitrage condition becomes a
PDE. There are rules that tell us how Dy, and Dgey depend on S an its dynamics.

5. EQUILIBRIUM ASSET PRICING

Finance starts with asset prices and focuses on the conditions for the absence
of arbitrage opportunities. By contrast, economics starts with individuals who are
both investors and consumers and focuses on their optimizing behavior as charac-
terized by “marginal cost equals marginal benefit.” It turns out that these two
approaches have much in common. In particular, the state—price deflator that we
discussed above (i.e., the deflator that guarantees the absence of arbitrage) can be
interpreted as the marginal utility of a representative investor/consumer.

An investor/consumer must decide how much to consume, how much to save, and
how to invest the savings. Those decisions will depend on the investor/consumers’
preferences: their patience and their attitudes toward risk and return. Those atti-
tudes are characterized by what economists call a wutility function. There are three
important features of a representative investor/consumer’s preferences.

1. The investor/consumer places a higher value on consumption right now than an
equal amount of risk-free consumption next year (i.e., the investor/consumer
discounts the future).

2. The investor/consumer obeys the law of demand with respect to consumption
today versus consumption in the future in that he would increase savings in
response to an increase in the (real) interest rate and vice-versa (i.e., the
investor/consumer has a positive elasticity of intertemporal substitution).

3. The investor/consumer prefers to receive the average payoff with certainty
rather than gamble on risky outcomes (i.e., the investor/consumer is risk
averse).

Utility is derived from consumption—both current consumption and expected fu-
ture consumption. Thus, maximizing consumption today will not maximize utility
today: Future prospects affect happiness today. An investor/consumer is constantly
choosing how much to consume today and how much to save in order to produce the
pattern of consumption through time that maximizes utility. Asset prices are deter-
mined by these decisions. To see how this happens, suppose an investor/consumer
buys an asset right now and plans to sell it next year. If he did not buy the asset,
he could consume more right now, contributing to his utility today. When he buys
an asset, he loses this utility. On the other hand, if he buys the asset, he can sell
it next year and, depending on what the asset is worth next year, he can increase
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his consumption by that amount. This prospective increase in future consumption
will contribute to his sense of well-being today: It will increase his utility by some
amount right now. In order to maximize his overall utility from the perspective
of right now, an investor/consumer must balance these two sources of additional
utility.

Let MUy 0w represent the additional utility an investor/consumer would get right
now from a little more consumption right now. Let Mif,, and MU gown represent
the additional utility he would get right now from the prospect of a little more con-
sumption next year in each of the two possible states of the world. (The “up” and
“down” subscripts simply distinguish the two states; they do not refer to how the
investor /consumer feels about consumption in those states. We discuss good and
bad states of the world below.) The additional utility right now from additional
consumption next year can be decomposed into the product of three factors. One
factor measures the additional utility in a given state next year from additional
consumption—conditional on being in that state next year. But because consump-
tion in the future is not as good as consumption today (see factor 1. above), another
factor measures the percentage reduction in that additional utility to discount it
back to right now. The third factor is the probability that the state actually occurs.

Consider an asset with price Dy, and payoffs Dy, and Dgown. The utility cost
right now of buying the asset right now is

MU now Driow - (5.1)
The utility gain right now in anticipation of selling the asset next year is
Muup Dup + Mudown Ddown (52)

In equilibrium these to sources of additional utility from (5.1) and (5.2) must be
equal; otherwise the investor/consumer could make himself better off by changing
his plan. Equating (5.1) and (5.2) and solving for Dy produces

Dnow - < Muup > Dup + (MUdOWH> Ddown

MU Low MU pow (5.3)
Muup /pup Mudown/pdown ‘
= Pu ——— | Dy own D own-
Pup ( Mty ) P PO MUy, d

Equation (5.3) is a general equilibrium asset pricing formula.

An we noted above, we can decompose MUy, and MUgown into three compo-
nents: (¢) the additional utility from consumption in that state of the world when
that state occurs, (i) the probability that state occurs, and (iiz) the discount factor.
(Of course, MUy is composed entirely of component(4).)

Let us focus on component (i). The value of an additional unit of consumption
in a given state of the world depends on how much consumption will be available in
that state. In bad states of the world, consumption opportunities are low and the
value of additional consumption is high. Conversely, consumption is high in good
times and the value of additional consumption is low. Therefore a security that
pays off in good states of the world is not particularly useful: It contributes to the
risk across the different states, and investors require a risk premium to hold it. By
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contrast, a security that pays off in bad states of the world is very attractive—it is
like insurance: It reduces risk across states of the world, and investors will pay a
premium to hold it.

If consumption grows rapidly between now and next year, we will end up in a
good state where additional consumption is not valued highly. By contrast, if con-
sumption grows slowly (or even negatively) between now and then, we will end up
in a bad state where additional consumption is valued quite highly. Thus we can
see that securities whose returns are highly correlated with the growth rate of con-
sumption are viewed as risky. For a given covariance between the security’s returns
and the growth rate of consumption, the more risk averse investor/consumers are,
the larger the risk premium required to hold the security. By contrast, securities
whose returns are negatively correlated with the growth rate of consumption are not
at all risky. (Of course the average security will have to be positively correlated.)
This is known as the Consumption-based Capital Asset Pricing Model (C-CAPM).

We now examine more closely the relationship between general equilibrium asset
pricing and arbitrage-free asset pricing. Consider applying (5.3) to the risk-free
bond that we introduced at in the first section. In this case we have

Dhow = Brow, Dup - (1 + T) Brow, and Dgown = (1 + 7") Brow.

Inserting these expressions into (5.3), dividing through by Byew, and rearranging

produces
1 ( MUy, ) n <Mudown>
1+r MU now MUnow )
We see that the sum of the Arrow—Debreu prices is 1/(1 4 r). If we define

(mu,
o= () (047

~ Mudown
= _— 1
Pdown ( MUHOW > ( + ?"),

then (5.3) becomes

_ Davg
147’
which is exactly what we had above for arbitrage-free asset pricing.

now

An explicit example of a utility function. In this section, we present a utility
function that will illustrate the points made above. We will build up the complete
utility function in stages.

For the first stage, we consider the utility of consumption in a given state, either
right now or in the future, in isolation. We will write the consumer’s utility as u(C),
which means that the utility depends on the amount of consumption. In a more
general setting, we would expect that utility would depend on the mix of things
that go into the total consumption. Surely a varied diet is more pleasant than a
monotonous one. However we will ignore that aspect for simplicity’s sake. We will
also ignore the fact that the one’s happiness may depend on how much or how little
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one must work. Since we are not interested in explaining variations in the work
week over time, we will ignore this aspect as well.

The first feature we want to build into our utility function is this: More is pre-
ferred to less. Thus we require that as C' increases, so does u(C'). This means that
u is increasing in C. Let C < Cy. Then, if more is preferred to less, u(Cs) > u(Ch).
Let’s look at the increase in utility by per unit of increase in consumption:

u(Cs) —u(Ch)
Cy — Cy

The ratio in (5.4) is known as marginal utility. As long as more is preferred to less,
marginal utility is positive. The second feature is known as diminishing marginal
utility. It means that when you don’t have much consumption, a little bit more
consumption can increase your happiness quite a bit, but when you already have a
lot of consumption, a little bit more consumption will not increase your happiness
as much. Let € < Cy < ('3. Diminishing marginal utility means

U(Og) — U(OQ) < U(CQ) — U(Cl)
C3—Cy Co—Cy

(In terms of calculus, the two features are that the first derivative is everywhere
positive and the second derivative is everywhere negative: u/(C') > 0 and v"(C) <
0.) These two features, which determine the shape of the utility function, are all
that is important. The absolute level of utility is of no consequence. It’s fine for
the level of utility to be zero or negative, as long as it increases with consumption
at a declining rate. For example, let v(C) = a + u(C'), where a is a constant. The
behavioral implications of v(C) are identical to those of u(C). In other words, if
there were two investor/consumers, one with utility function «(C) and the other
with utility function v(C), they would always make the same choices.

Now we consider how an individual feels about risky consumption. Would a
consumer prefer a gamble that paid on average the same as a sure thing? The
sure thing pays C units, while the gamble pays either C' 4+ § or C' — § with equal
probabilities. The average payoff of the gamble is C'. The utility of the sure thing
is u(C'). We take the utility of the gamble to be the average utility (not the utility
of the average):

> 0. (5.4)

(5.5)

u(C +0) + u(C — )
2
The loss in utility of going from the sure thing the gamble to is

<u(C+5)+u(C—5)> B

2 g{<u(0+5;—U(C’)> B <u(C) —3(0—5)>} <0, (56)

where we know the sign of (5.6) from (5.5), with C; = C—§, Cy = C, and C3 = C'+4.
To measure risk aversion, we can find out how fast the utility loss increases as ¢
increases (normalized by the marginal utility near C). (In terms of calculus, the
measure of risk aversion is —u”(C)/u/(C).)
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Now let’s consider simultaneously consumption right now and uncertain con-
sumption next year. This utility function embodies all of the features we discussed
above. Let

1 1

3 U(Cup) + 3 U(Cdown)
Z/u«%m)+{2 “p1+% e (5.7)
where u( - ) measures the utility of consumption in a given state of the world and U
measures the utility of the total consumption plan. p > 0 measures the subjective
discount rate that results in valuing future certain consumption less than current
consumption. To see this, suppose Chow = Cyp = Caown = C. Now consider the

utility value this consumption right now versus next year:

u(C)
C) > .
u(C) > T P
Next consider a specific functional form for w:
ct -1
_— 1
wWC) =3 17 77 (5.8)

log(C) v=1.

where v > 0. For this utility function, marginal utility (for small increases in
consumption) is given by C'~7, and the coefficient of relative risk aversion is .
(The measure of risk aversion is —u”(C)/u/(C) = v/C. Hence v measures risk
aversion relative to the level of consumption.)

How much additional utility will a bit more consumption deliver for our investor//-
consumer?

3 (Cup)™
1+p

% (Cdown) —

MZ/{now == (CHOW)_’Y7 Muup = 1 + p

) and Mudown =
(5.9)

We see in (5.9) that we have indeed decomposed MU, and MU gown into the three
components discussed above. Let the growth rates of consumption be given by

Cup —1 and Cdown

Cup = Cdown —
P Chow Chow

The intertemporal marginal rates of substitution are given by

¢! up) | ¢! own -
Muup _ 2 ( +c P) and Mudown _ 2 ( +cq ) ) (510)
MU ow 1+p MU now 1+p

Recalling that the sum of the state prices is 1/(1 + r), we can write

1 3 (1+cup) ™ + 5 (1 + cdown) ™ (5.11)
1+r 1+p ' '

If the growth rate of consumption were state-independent so that c.p, = Cdown = Cave,
then we could write (5.11) as

L+7=(1+p)(1+cag)- (5.12)

- 1.
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If consumption for example were constant (caye = 0), then 7 = p. We can take logs
of (5.12) and use the approximation log(1 + z) ~ x for small z to obtain

TR P+ Y Cavg. (5.13)

We can see how the equilibrium interest rate depends on the rate of time preference
and the expected growth rate of consumption. We can solve (5.13) for cayg:

r—p
—

We see that an increase in the interest rate will increase the growth rate of con-
sumption by 1/, the elasticity of intertemporal substitution.
Given (5.10), we can write the valuation formula as

1 (14cup)” 1 /(14 cdown)””
Dyow = = (Tﬁ) Dup + 3 <T"Wp“ Down- (5.14)

CcC =

Comparing (5.14) with (4.18), we see that the stateprice deflator can be written
in terms of the discounted marginal utility of consumption:
Yl;kp _ (1 _I_ Cup)_ﬂy a d Y(ikown _ (1 + CdOWn)i’Y )

Yr.,  14p Y 1+p

now now

Therefore we have

yt = (1 + cup)™” = (1 + cdown) ”

Above, we found an expression relating y, and A, (4.19), which together with
(5.11) delivers an expression for A:
1 W1 -1 - Y
N (4 )y, = L o) T = (b cup) 7 Yol (5.15)
(1+Cup) 7+ (1 +Cd0wn) v 1+Cavg
(In continuous time, we get A = 7y ¢yo exactly.) This relation captures the problem
this model has: We need a big A, but ¢y is small and therefore v must be quite
big—too big.

Wealth. We may now ask about what we have so far ignored: What is the source
of the consumption? How is the consumption is produced? However that may be,
we can find the value of the source of consumption by treating consumption as the
dividends (i.e., payoffs) that accrues to that source:

1 (1 + cu )—’y 1 (1 + Cdown)_’y
Whow = = [ 2l S () ) o
now 2( 1+p )Cup+2< 1"‘,0 CVdo
<% I+ cup) 7 +1 1+ cdown)1—7>
= Chow-

1+p

This is the ex dividend value of the investor/consumer’s wealth: It does not include
the value of current consumption. Notice that when v = 1, the capital-consumption
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ratio depends only on the rate of time preference, p:
WHOW — 1
Chow 1+p

6. THE TERM STRUCTURE OF INTEREST RATES

In this section we take the setup we have been using and reinterpret the bond and
the stock as one- and two-period default-free zero-coupon bonds. The one-period
bond pays off one unit in both states next year. Given the one-period interest rate
today, Tmow, the price of the one-period bond today,

1

_ 6.1
1+ T1,now ( )

Bl,now =
The payoffs for the two period bond next year are the bond’s price. Next year, the
two-year bond will become a one-year bond. It’s price will depend on the one-year
interest rate next year. We now have a problem of terminology with using “up” and
“down”. If the one-year interest rate is high next year, the one-year bond price will
be low (and vice versa). We choose to associate “up” and “down” with the interest
rate. With this terminology we have

1

Biup = e
sup °
1+ T'1,down

and  Bj down = (6.2)

1+ T1,up
One “problem” with this choice arrises. Previously, the price of risk was associated
with an asset price. A positive price of risk meant that an asset was risky (rather
than being insurance). But in this case, the price of risk is associated with move-
ments of the interest rate. Since bond prices (which are asset prices) move inversely
with interest rates, the ups and downs of the interest rate are associated with the
downs and ups of bond prices. Therefore, if bonds are risky assets (rather than
being insurance), then the price of risk must be negative. In other words, a negative
price of interest rate risk implies a positive price of bond price risk.

We can get a lot of mileage out a very simple model of the dynamics of the
short-term interest rate. Let

T1,up = Tl,now 1 0 and T1,down — Tl now — J,
where 0 > 0. Therefore we have
Tl,avg = T'1,now and T1,vol = J.

In this model, the short rate is a martingale, since 7 ayg — 71 now = 0. Using (6.2),
we can write
1 1

B . Bl,up + Bl,down _ I4rip + 1471,down 1+ T'1,now
5 = = =
e 2 2 (14 71 now)? — 62
and
|
B _ Bl,up - BLdOWH o 1‘i""l,up 1""rl,down . _6
2,vol — - -

’ 2 2 (1 + Tl,now)2 — 6%
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Let the price of the two-year bond right now be denoted B3 ,ow. Having com-
pletely specified the short-term interest rate (now and in all future states), can we
say what the price of a two-year bond is right now? The answer is no. The only
thing we can say is that one bond does not dominate the other. From (2.2) and
(6.1), we can write the no-dominance condition as

Biup < % < Bl.down, (6.3)
1,now

where B3 now/B1 now is the forward price of the two-year bond. Within these bounds,
we have a degree of freedom left in pinning down the price of the two-year bond
today. This degree of freedom is captured by the price of risk: In combination with
the dynamics of the short-term interest rate, the price of risk will pin down the
price of the long-term bond. We can solve the expression for the relation between
risk and return (4.11) for the price of the two-period bond

AJd
B _ B27avg — )\BQ,VOI _ L+ 1471 now (6 4)
2mow 1+ T1,now (1 + Tl,now)Q — 6% '

Spot yields and forward rates. The two-year yield (compounded annually is
defined implicitly in

1
B = 6.5
2,now (1 + T2,now)2 ( )
We can solve (6.5) for 72 now:
L (6.6)
r = -1 .
2,now B2,now
In our case, the two-year yield is
(1 + Tl,now)z — 42
T2,now = X0 -1
1 + 1+7"l,now
The forward price of the two-year bond is
1+ T1,now 1 Y]
Kp = (1 + Tl,now) BQ,now = B2,avg - )\BQ,VOI = (1 n rl,now)Q — 52
The forward rate is defined implicitly in the following equation:
1
Kp=—"7°-——.
1+ Fl,now
Therefore, the forward rate is
1 now 2 52
Fl,now - ( +r1’ > ) - (67)

1+ T1,now 1 Ao

We focus on now on the relation between the forward rate and the expected future
short rate, r1 avg (which in this example equals rj now). The difference between the



24 MARK FISHER

forward rate and the expected future spot rate is called the forward premium. We
can write the forward premium as

~6 (6 + A (1 + T1now))

1 + 71, now Ad (68)

Fl,now — Tlavg =

Clearly, from (6.8) we see that if 6 = 0, Fi now = 1,avg. But if § > 0, then there are
two competing forces that drive a wedge between the forward rate and the expected
future spot rate. First, if the price of risk were zero, then the remaining force is the
convezity effect, due to Jensen’s inequality:

—52
F —r =—
1,now 1l,avg 1+ T1now
where §2 is the variance of the short rate. Therefore, if the price of risk were zero,
the yield curve would slope downward on average.
However, the yield curve slopes upward on average. The other effect is due to
the risk premium, —A . The sign of the net effect is given by the sign of

0+ A1+ 71 now)-

If the sign of this expression is negative, then F} now —71,avg > 0. Roughly speaking,
as long as —\ > 4, the forward rate will be above the expected future spot rate and
the yield curve will slope upward on average.

A three-year bond. Let us extend our term structure model by another year. We
denote the price right now of a three-year, default-free zero coupon bond by B3 jow-
Next year, this bond will become a two-year bond. Therefore, if we extend our
model of the dynamics of the short rate one more period, we can apply our pricing
formula for the two-year bond today to the three-year bond next year. Then we
can take those two values for the two-year bond as payoffs next year to find the
value of the three-year bond right now. This recursive structure can be extended
indefinitely.

Here is how we extend our model of the interest rate. If the interest rate turns
out to be r1 yp next year, then the interest rate the following year will be either

Tup T 0= T1,now 1 20 or Tlup — 0= T1,now

with equal probabilities, and if the interest rate turns out to be ri gown next year,
then the interest rate the following year will be either

T1,down T 0= Tlnow O T1down — 0= T1now — 26
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with equal probabilities. The structure of possible rates through time looks like
this:

T1,now T 20
T1,now +0
T'1,now
T'1 now (6.9)
T'1,now
T1now — 1)
T1,now — 26

With this setup, next year riup, = "1 now + 6 and 71 down = T1,now — 0 play the
role that r1 now plays right now. We can stick these one-period interest rates into
the two-year bond pricing formula (6.4) to find the price of a two-year bond in each
state next year:

Ad
B 1 + 1471 up
2
T ) 0
Ad
1 + 1‘i'rl,down
BQ,down -

(1 + Tl,down)2 — 02
We can find the price right now for the three-year bond by applying the formula:

B3,avg - A BS,vol
1+ T1,now

B3,now =

Although this procedure is straightforward, it is beginning to get a bit messy.
The forward price of the three-year bond for delivery in two years (at which time
it will have become a one-year bond) is

B37now o BS,avg - A B&vol
B2,n0w BQ,avg - A BQ,vol

The forward rate associated with this forward price is

BQ,an - A B2,v01 _1
)
BB,avg - A BS,VOI

F3,n0w -

and, since the average short-term interest rate two years from now, 7y ,yg(2), equals
T1now from today’s perspective, the forward premium is

o B2,avg - A BQ,vol
B3,avg - A B3,V01

362 (1+ rimow) (14+A2) =262 ((1 T now) + 2 52)

((1 + T now)? — 52) 436X (1+ TLnow + 6 \)

F3,now — T avg(2) - (1 + Tl,now)

(6.10)
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The two terms in the numerator have opposite signs (assuming the price of risk
is negative). The first term is the convexity term and the second term is the risk
premium. If the price of risk were zero, (6.10) simplifies to

—36% (14 71 now)
(1 + Tl,now)g — 62

F3,now — Tlavg(2) = < 0.

Also note that when A = 0, the forward rates get progressively lower:

FS,now < FQ,now-

Which pseudo probabilities? In the previous section, we let the one-period risk-
free interest rate change randomly through time. In this section, we continue to
explore some of the effects of randomly changing interest rates. We will use the
information we have to uncover the Arrow—Debreu prices for four states of the
world two years from now. (Thus far, we have only priced default-free bonds that
payoff the same amount in every state.) Even though the state prices are uniquely
determined, we will see that there are two ways to factor them pseudo probabilities
and present values. Also we will see which of those pseudo probability distributions
can be extracted using option prices and bond prices.

We adopt the setup from the previous section. Refer to the tree-like structure in
(6.9). Two years from now, there will be three possible states of the world:

T1,now — 26, T1,now> and T1,now 1 26.

On the other hand, there are four possible paths or sequences of the short rate, two
of which end up at 71 now:

up

. up
(Z) T1,now > T'lnow T o > Tlnow T+ 26
.. up down
(ZZ) Tlnow — Tlnow T 6 — T'1,now
down up
(”Z) Tlmow —— Tlnow — 6 — T'1,now
. down down
(Z'U) T'1,now > Tlnow — o > Tl,now — 24.

Each of these paths is equally likely with probability i. Therefore, by adding up
the probabilities of the paths that end up at 71 now, we see that the the probability
that the short rate will be 71 now in two years is % In addition, we see that the
average value of the short rate in two years is r1 now. It turns out, however, that
the rates at year two play no role in the analysis that follows. They are simply
“placeholders” used to distinguish among states.

At each “node” on the tree where the interest rate branches into two possibilities,

now and next year, the pseudo probabilities of the branches are given by

. 1—-A . . 14+ A
pup:T and pdownzl_pup:T'
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Therefore, the pseudo probability for each path is given by

Pupaup = Dop = % (6.11a)
Pup,down = Pup Pdown = W (6.11Db)
Pdown,up = Pdown Pup = W (6.11c)

Pdown down = Piown = w (6.11d)

These probabilities add up to one, since the four paths are the only possible ones.
The probability that the short rate will be 71 10w in two years is the sum of the
probabilities of the two middle paths [(6.11b) plus (6.11¢)],

(I+X)(1—=X)
-

Clearly when A = 0 these pseudo path probabilities are the same as the physical
path probabilities.

Also at each node, the Arrow—Debreu state prices for payoffs one step ahead are
given by

2 Pup Pdown = (6.12)

ﬁup _ 1—=A and ﬁdown _ I+ A
L+71,  2(1471,) L+7rn  2(1471,)

7

where n is either “now” or “up” or “down,” depending on where we are in the tree.
The price of a unit payoff at the end of each of the four paths is given by the product
of the prices at each node in the path:

. ﬁup ﬁup (1 - )\)2
= 6.13
(Z) <1 + rl,now) (1 + Tl,up) 4 (1 + rl,now) (1 + Thow + 5) ( a)

@ () () N0 (6.15b)

1+ T1,now 1+ T1,up 1+ rl,now) (1 + Tnow + 5)

(i) < Pdown )( Dup ): U+ =% (6.13c)

1 + rl,now 1 + Tl,down 4 (1 + rl,now) (1 + Tnow — 5)
. ﬁdown ]adown (1 + >‘>2

v = ) 6.13d

( ) <1 + Tl,now) (1 + Tl,down) 4 (1 + Tl,now) (1 + Tnow — 5) ( )
Therefore the price of a unit payoff conditional on the short rate equaling 71 now in
two years is the sum of the two middle prices [(6.13b) plus (6.13c)]:

(IT+XN)(1=X)
2 (1 + T1,now + 5) (1 + T1,now — 5) .

We now have the price of a unit payout in each of the three possible states of
the world in two years, given by (6.13a), (6.14), and (6.13d). Recall that a two-

year default-free zero-coupon bond is a claim to one unit in each state in two years.
Indeed, we can confirm that the sum of these three values is the value of the two-year

bond, B3 now-

(6.14)
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Since the three values are all positive and add up to B now, We can divide them
each by B now and interpret them as probabilities:

- 1+ 71 now — 0 (1_)‘)2
up = ) 1
Pa.up <1+r1,now+6A> < 1 (6.15)

- 1471 now (1+)‘)(1_)‘)
middle — . .15b
P2,middl <1 +T1,now + 6)\> < 2 (6 g )

- 1“‘rlnow"i_(s (1+)‘)2
own — ’ . 6.15
P24 <1+r1,now+5)\> < 4 (6.15¢)

Moreover, we can easily compute the price of any asset that has payoffs only two
years from now (i.e., with no payoffs one year from now):

Dnow = B2,n0w (ﬁZ,up D2,up + ﬁ2,middle DQ,middle + ﬁQ,down DQ,down) ) (616)

which is the present value of the average payoff using the probabilities in (6.15).
Note, however, that these probabilities are not the same as the pseudo path proba-
bilities we calculated above, (6.11a), (6.12), and (6.11d). Only if § = 0 are they the
same. This corresponds to the case in where the interest rate is not stochastic.

The probabilities will we uncover using option prices turn out to be those in
(6.15). Basically, using the prices of options on the short rate itself, we can isolate
the value of a unit payoff in any state of the world associated with the short rate, say
B3 now D2,down- To get the original pseudo probabilities from this value, we would
need to know which paths of the short rate to associate with this state. In our
example this is not hard to do, but in a more realistic setting this would not be
possible using only bond prices and option prices. What we can extract with these
prices (obviously) is

B2,now ﬁQ,down
BQ,now

ﬁQ,down -

For a specific example, consider a (European) put option on the short-term interest
rate that expires two-years from now, where

T1,now — 20< Kp < T1,now-

This put ends in the money only if the interest rate ends up at r1 now —2 9. Therefore,
using (6.13d), the value of the put today is

(1+X)?
Poow = (Kp — ("1now — 20 .
o = (K = Coon =20) (T (e
Using our trick with two strike prices, both between 71 now — 26 and 71 now, We can
extract the Arrow—Debreu state price
(1+A)?
4 (1 + Tl,now) (1 + Tnow — 5) ’
However, without knowing all of the paths of the money-market account that lead to
that value of the short rate (which, in a more realistic model, we would not know),

the only thing we can do is divide this state price by the value of the two-year bond,
producing (6.15¢) rather than (6.11d).
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There is another way we can decompose the price of the two-year bond (or any
other asset price). Consider the money-market account. The money market account
starts with an initial investment of one unit and earns the short-term risk-free
interest rate each period, Bnow = 1. Right now, we know exactly what the money-
market account will be worth after one year, 31 = 1 4 71 now, but we don’t know
what it will be worth after two years because we don’t know what the short-term
interest rate one year from now. In two years the money-market account will be
worth either

ﬁQ,up = (1 + Tl,now) (1 + 7ﬂl,up) or 52,down = (1 + Tl,now) (1 + Tl,down)-

Now we can write the Arrow—Debreu prices for the end of each path (6.13) in terms
of the path pseudo probabilities (6.11) and the value of the money-market account:

ﬁup,up ﬁup,down ﬁdown,up ﬁdown,down
) 9 P Ild —_—.
ﬂQ,up /62,up /82,down /BQ,down
Therefore, the price of an asset right now that has payoffs at the end of each path
is

. D, Dypa
~ p,up ~ up,down
Dnow = Z2,avg = Pup,up ( + Pup,down | —
ﬂQ,up 6271113

~ D down,up ~ D down,down
+ Pdownup | —5—— + Pdown,down | —F—— | »
/82,down ﬂ?,down

where 75 = %.
The forward price vs. the futures price. When the short rate is stochastic,
forward price and futures prices or not the same. In our example, we must look
at forward and futures prices for delivery in two years. If we look at forward and
futures prices for delivery in one year, they will be the same because the interest
rate has no opportunity to change prior to delivery.

Since the payoffs for the forward contract all occur in two years, we can use (6.16)
to find the value of K that makes the value of the forward contract (on the stock)
zero right now:

0 = B2 now (ﬁQ’up (S+2e— Kr)
+ Pomiddle (S — KF) + Podown (S — 2€ — Kp)), (6.17)
where € is the shock to the stock price. Solving (6.17) for Kp produces
Kr =S+ € (p2,up — D2,down)
_g_. (5(1 + A +22(1 +r17now)> _
1+ 71 now +0A

What is the value next year of a forward contract entered into right now? Next
year the forward contract will be an asset that makes its payoffs in one year. Its
value will be either
ﬁup(5+26_KF)+ﬁdown(S_KF)7 6(1+>\>
1+Tl,now+5 B 1+T1,now+5)\
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or
ﬁUP(S_KF)+ﬁdown(S_2€_KF): —6(1—)\)
1 + T1,now — ] 1 + T1,now — Py

depending on which state we end up in.

A futures contract requires resettlement: Each period any losses on your futures
position must be paid and any gains will be received. This is in contrast to a
forward contract for which no settlement is made until the delivery date. This
resettlement feature means that a futures contract pays “dividends” prior to the
delivery date, and those dividends ensure that immediately after they are paid the
value of the futures contract is always zero. Since the gains and losses are computed
from changes in the futures price (which is not the value of a futures contract), the
dividends must equal those changes. Let K ,ov denote the futures price today.
The structure of the dividends for the futures contract looks like this:

( (S+2€) — Krup
Krup — KF now
S —Krup
(6.18)
S — Kx down
Kr down — KF now

(S —2 6) - K]-—,down

We can find the futures price today by recursively solving backward from the de-
livery date. First find the values of Ky, and Kr qown that make the value of the
futures contract equal zero in each of the two states next year; then find the futures
price today that makes the value of a claim to the dividends paid next year equal
zero.

We start by determining K ,p and Kz gown. The condition that the value of the
futures contract be zero in each state next year can be written as follows:

ﬁup ((S + 26) - K}',up) +ﬁdown (S - K.'F,up)

=0

1+ T1,up
ﬁup (S - K]—',down) +ﬁdown ((S - 26) - K]-',down) ~0
1+ T1,down '

These conditions can be solved for Kz ., and Kz gown:

K}—:UP - ﬁup (S +2 6) + ﬁdown S (6 19)
K]-—,down - ﬁup S + ﬁdown (S -2 6). ’

Now the futures price today must by chosen to make payoffs equal to the change in
the futures price have no value today:

ﬁup (K}—,up — K}—,HOW) + ﬁdown (K.'F,down - K]-',now)
1+ T1,now

:()7
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which we can solve for Kz now:
K}',now - ﬁup K}',up + ﬁdown K}—,down- (620)

Now we can substitute in expressions for Kz ,, and Kr gown into (6.19):

K7 now = Dup (ﬁup (S +2€) + Pdown S) + Pdown (ﬁup S + Ddown (S -2 6))
= ﬁﬁp (S + 26) + 2ﬁup Pdown S +ﬁ(2iown (S -2 6)
(1— )2 L-NA+Y) o, Q1+ (6.21)

= (5+20)+ 5 T (9-2¢)

=5 —2€l.

By working backwards this way, we have used the original pseudo path probabilities,
in contrast to the forward price which uses the final-state probabilities. When the
interest rate is not random, the two sets of probabilities are the same and so the
forward price equals the futures price. The difference between the forward and
futures prices is

Se(1—22)
KFnow — Kp = )
Fmo r 1+T1’now+5)\
the sign of which is determined by the covariance between the value of the underlier
and the interest rate, d €.

APPENDIX A. STOCHASTIC PROCESSES

Almost everything we encounter in asset pricing is a stochastic process. Quite
simply, a stochastic process is something that evolves randomly through time ac-
cording to a set of probabilistic rules, like the value of the stock. (Things that
evolve deterministically, like the value of the bond, are special cases of stochastic
processes.) For our purposes, we can think of as stochastic process as a description
of “how something changes.” For the stock and the bond, we specified (in addition
to their values right now) each of their values in both states of the world. It often
turns out to be convenient to specify instead the average change and the volatility
of the changes.

For the purpose of exposition, let X,ow be the value of an arbitrary stochastic
process right now and let X, and Xqown be the values in the up and down states
next year. For simplicity, let the probabilities that the stock price goes up or down
be

1
Pup = § and  paown = 5

The change in D is a random variable that we will write as'

AX — Xup — Xnow with probability
Xgown — Xnow With probability

0

D[ D=

The A in this appendix is not the same as the “deltas” we used in the section on options and
futures.
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We are particularly interested in (i) the average value of AX and (i¢) the dispersion
of AX. We call the average change the expected change of X:

HX = Pup (Xup - Xnow) + Pdown (Xdown - Xnow)
_ Xup + Xdown

2
= Xavg - Xnow-

- Xnow

We will measure the dispersion by the volatility of the change:
ox = ((Xup - Xnow) - (Xdown - Xnow)) v/ Pup Pdown
Xup - Xdown
2

= Avol-

We can see how the volatility, ox, is related to two other measures of the dispersion,
(i) the variance and (ii) the standard deviation. The variance of the changes is
given by the square of the volatility:

2 2
Xvar = Pup ((XUP - XIIOW) - MX) + Pdown ((Xdown - Xnow) - MX)
= (Xup - Xdown)2pup Pdown

_ (Xup - *Xdown)2
4

— o2

The standard deviation is the square root of the variance, and hence the absolute
value of the volatility:

X _de
Xdev =V Xyar = M = ’UX|-

With these definitions of the expected change and the volatility, we can write the
change in the value of the stochastic process as

AX — B + ox with probability
B ux —ox with probability

DNO|— D=

We can complete our description of the stochastic process by inventing a fundamen-
tal stochastic process, W

AW — +1 W?th probab?l%ty
—1 with probability

DO DO —

Notice that AW has the following properties:
pw =0 and o =1.
We can write the random change in X in terms of the random change in W':

AX =pux +ox AW.
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For those cases where X, is positive, we can look at the stochastic process for
the relative change in X:

)?n fv = g + 0y AW,
where
Lo = X and o, = Ix
XHOW XnOW

are (respectively) the relative expected change and the relative volatility. (Note the
use of the lower case letter.) If X is the value of an asset (and X0y is positive), then
we can interpret AX/X,ow as the random return, in which case p, is the expected
return and o, is the volatility of the expected return.

If we have two stochastic processes, say X and Y, we may wish to the covariance
between the changes in X and the changes in Y. It turns out that this covariance
equals the product of the volatilities:

1
COVX,Y = 5 ((Xup - Xnow) - HX) ((Yup - Ynow) - ,uY)
1
+ 5 ((Xdown - Xnow) - HX) ((Ydown - Ynow) - HY)
=o0xoy.

Risk and return. In the previous section, we found expressions for asset prices
that involved averages calculated using pseudo probabilities. Using the pseudo
probabilities, the expected change in the asset’s value is given by

fip = Pup (Dup — Drow) + Pdown (Ddown — Drow)
= (Pup Dup + Pdown Ddown) — Dnow
= Davg — Drow-
With this notation, we can write absence of arbitrage condition (4.6) as
ip = 1 Dyow- (A.1)

Let’s examine the relationship between the expected change using pseudo probabil-
ities and the expected change using the true probabilities:

. 1 . 1
HX — X = <§ _pup> Xup + (5 _pdown> Xdown

. 1
= ( _pup> Xup + (pup - 5) Xdown
( 5 ) ~ Xyoun) (A.2a)
up own
~ u _Xdown
= (1 _ 2pup) (%)

= Aoy,
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where
A=1-2py (A.2b)

is the price of risk. (We will give some meaning to this phrase below.) Notice that
A does not depend on Xyow, Xup, of Xdown-
Using (A.2a), we can write (A.1) as

HD = 7 Dyow + Aop,
which, if Doy > 0, we can write in terms of returns:
g =1+ Aog.
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