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ABSTRACT. This paper presents a simple exponential-affine model of the term
structure that replicates the failure of the expectations hypothesis quite well.
The model has two Gaussian state variables. Under the equivalent martingale
measure, both state variables (the short rate and its stochastic mean) determine
the shape of the yield curve, while under the physical measure the short rate is
Markovian. Thus instantaneous forward rates have a classical errors-in-variables
structure: They are moved by two variables (that are independent under the
physical measure), but the short-term interest rate is not moved by one of them.
This model shows that stochastic volatility is not required to model the failure
of the expectations hypothesis. The key is stochastic risk premia.

1. INTRODUCTION

In its strong form, the expectations hypothesis asserts that instantaneous forward
rates are the conditional expectations of the future short term interest rate. Fisher
and Gilles (1998) have shown that when the strong form of the expectations hy-
pothesis holds and there are a finite number of Markovian state variables, the yield
curve is bizarre: It is a sine wave with random amplitude and phase. A weaker
form of the expectations hypothesis does not require forward rates to be unbiased
predictors of future spot rates. It requires only that the bias of forward rates be a
deterministic function of maturity. This weak form of the expectations hypothesis
can be modeled with state-independent volatilities and risk premia.! Under the
weak form, regressions of the change in bond yields on the slope of the yield curve
will produce a slope coefficient of unity. For U.S. data, this implication of the weak
form has been consistently rejected. See for example Campbell and Shiller (1991).

This paper is a complementary modeling exercise to Fisher and Gilles (1998).
Here I present a simple model that fits well the empirical failure of the weak from
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of the expectations hypothesis. I show that the key to modeling the failure of the
weak form is to make the price of interest-rate risk depend on a mean-reverting
state variable that is independent of the interest rate.

We can embed this pure-finance model in a general-equilibrium framework and
provide an interpretation in terms of the behavior of the monetary authority. In
the simplest setting utility depends additively on the log of real balances, and con-
sequently the nominal price of risk equals the volatility of the nominal money sup-
ply plus the volatility of the short-term nominal interest rate. In this general-
equilibrium framework, the monetary authority sets the short-term interest rate as
a function of a set of state variables. This interest-rate rule, however, does not
completely determine the dynamics of nominal money growth. If additional state
variables are required to describe the volatility of money growth, then the nominal
price of risk will have a component that is independent of the interest rate.

2. THE MODEL

The general setting. The case I will consider falls in the following more general
setting. There is a vector of d Markovian state variables, X (¢), that evolve according
to the following stochastic differential equations (SDEs):

dX(t) = px (X (1)) dt + ox (X (2)) dW(2), (2.1)

where W is a vector of d independent Brownian motions. The short-term risk-free
interest rate and the price of risk vector are determined by functions of the state
variables:
r(t) =R(X(t)) and \(t)=L(X(t)). (2.2)
Under the standard equivalent martingale measure the drift of the state variables
is given by 1ix(X(t)), where
pix(z) = px(z) — ox(z) L(x). (2.3)

Duffie and Kan (1996) show that as long as R(x), fix(z), and ox(z)ox(z)" are
affine in z, then (subject to the existence of a solution to the SDEs under the
equivalent martingale measure) the price at time ¢ of a zero-coupon bond that pays
one unit at time 7" is given by p(t,T) = P(X(t),T — t), where

P(x,7) =exp <7A(7') - B(T)TI) , (2.4)

where B(7) is a vector of factor loadings. Note that since p(7,7) = P(X(T),0) =1,
we must have A(0) = B;(0) = 0 for all 7.
In particular, if

d
R(z) = Ro+R{x, jx(z)=ax+bxz, and JX(x)aX(x)T:GO+ZG¢x,
i=1

(2.5)
then
() = Ro + ax B(r) — % B(r) Gy B(r) (2.6)
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and
B(1)"G1 B(7)
B'(r) =Ry +bx B(r) -+ : (2.7)
B(1)'G4B(7)
If G;=0fori=1,...,d, then the distribution of state variables is Gaussian.

The particular model. There are two state variables,

<= ()

The short-term interest rate is r: r(t) = R(r(t), z(t)), where R(r,z) = r. Under
the physical measure the two state variables are independent. Let

Ky 0, —kr 0 r o 0
ux(r,z) = (Hz 9Z> + ( 0 —Féz> (z) and ox(r,z) =ox = (0 Uz> ,

where k;, 0;, and 0; are constant parameters. I assume k; > 0 and 6; > 0. The
stochastic differential equations (SDEs) for the state variables are given by

dr(t) = kr (6 — r(t)) dt + o, dW(t) (2.8a)
dz(t) = Kk, (0, — 2(t)) dt + 0. dWa(t), (2.8b)

where W7 and Wy are independent Brownian motions. The state variables are
independently conditionally normally distributed. The conditional expectations and
variances are given by

w0 D)] = (@2En) + (07 ) () e

M\zt+n)) ] T 0 oZ(l—e7?%:7) |- (2.10)

2K,

and

The unconditional means and variances are given by

ap
0= <0T> and V= (2"‘" 02 >
02 0 O

2K,

The key feature of the model is the price of risk vector, which I model using an
idea from Chacko (1997). Let the price of risk function be given by

Kr(0p —7) —Rp (2 —7)

L(r,z) = Kz(ez_z)‘f%z@_z) : (2.11)

Oz

where k; and (9\2 are constant parameters. Ordinarily, in a Gaussian model, the price
of risk is not state-dependent. Without such state-dependence, the weak form of
the expectations hypothesis will hold. Also note that the price of interest-rate risk
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is driven (in part) by the second factor. (The model does a good job even if the
price of second-factor risk is constrained to be zero.)
Following (2.3), the risk-adjusted drift is given by

N 0 —Rr R r
w0 = (5)+ (0 %) ()

The SDEs under the equivalent martingale measure are given by

dr(t) = Ry (2(t) = r(t)) dt + o, AW (2) (2.12a)
dz(t) = R (0> — 2()) dt + o dWs(t). (2.12b)

=)

This is an exponential-affine model of the term structure since R(r, z), fix(r, z), and
ox(r,z)ox(r,z)" are all affine in  and z. Therefore bond prices have the following
form:

P(r, 2,7) = exp (—A(r) — By(r)r — Bu(7) 2). (2.13)
where
A(r) = / TO 7.0 B.(s) — % (02 B, (s) + o? B.(s)) ds
By(r) =+ ‘;‘
Bu(r) = Ro(l—e ™ T) =R, (1 —eRT)

/"%z (//%z - /"%7')
Note that the convexity term (due to Jensen’s inequality),
2 2
_5 (UT BT(T) + o, BZ(T)) 3

is deterministic and impounded in the constant term. It plays no role in the failure
of the weak form of the expectations hypothesis in this model.
Zero-coupon yields are given by y(¢,T) = Y (r(t), 2(t),T — t) where

—log(P(r,z,7)) ~ ~ ~

Y(r,z,7) = ~ = A(T)+ By(1)r + B,(7) 2, (2.15)
where
E(T) = AS_T), ET(T> = BT;T), and EZ(T) = szT)

Forward rates are given by f(¢,T) = F(r(t), z(t),T — t), where

F(r,z,7):= —9 lOg(;D:T’ z7)) = A'(1)+ Bl.(1)r + B.(7) 2, (2.16)
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where
/ ~ 7 1
A1) =k.0,B,(T) — B (o

Bi(r) = e

R (e7®

2 B.() + Ug B: (7—))

r

_ e—k\z 'r)

/
Bz (7—) - k\z _ //%r
Since r(t) = y(t,t) = f(t,t), we have R(r,z) = Y(r,2,0) = F(r,2z,0) = r, so that
A(0) = A/(0) = 0, B.(0) = B.(0) = 0, and B,(0) = B.(0) = 1.

One measure of the term premium is the difference between the yield to maturity
on a zero-coupon bond and the average expected short-term interest rate over the
same horizon:

1

Er(t), z(t),7) ==Y (r(t), z(t), 7) — - E, {/ r(s) ds} ) (2.18)

=t

Integrating the conditional expectation of the interest rate given in (2.9), we have

t+T1 o= krT _ oKy T
1 E, [/ r(s) ds} = (—1 = + 1> 0, + (—1 c ) r(t).
T s—t Kp T Ky T
Inserting (2.15) and (2.9) into (2.18), we have
- 1—ehrT
&(ryz,7) = {A(T) — (7 + 1) 07«} +

Ry T
1— —Rr T 1 — e hrT "
{ ,\e — c }T+BZ(T)Z.

Ke T Ke T

We can make the premium independent of r by setting k, = k, without changing
the character of the model.

Holding period returns. Define the holding period return over the period from
t to t 4+ J on a bond that matures at time T as

_ log(p(t +4,T)) —log(p(t, T))

h(t,T,6) = 5 . (2.19)
In terms of forward rates, we can write (2.19) as
t+6 T
Oh(t,T,6) = f(t,s) ds—l—/ f(t,s) — f(t+9,s)ds, (2.20)
s=t s=t+0

where

F4T) = -0 log(;(gﬂ(t, T))

Under the expectations hypothesis, forward rates are martingales, and thus the con-
ditional expectation of the second term on the right-hand side of (2.20) is identically
zero. In this case, the expected holding period return on all bonds is the same.
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Letting P(x,7) be the function from state variable and maturity (7 = T — t)
to bond prices, we can write the numerator of (2.19) in terms of the general
exponential-affine model as

{log(P(z(t), 7 — 6)) — log(P(z(t), 7))} +
{log(P(z(t +9),7 —0)) — log(P(x(t), 7 —9))}. (2.21)

The first term in (2.21) captures the effect of reducing the maturity and depends
only on the forward rate curve at time ¢. The second term captures the effect of
changing the state variables and depends on how the state variables actually change
over the holding period. Taking the unconditional expectation of (2.21) leaves only
the first term, log(P (0,7 — J)) — log(P (0, 7)), since the factors are not expected to
change at there unconditional means. Conditional expected holding period returns
can be calculated using the conditional expectations of the state variables.

Using (2.9) and (2.13), we can write the (conditional) expected holding period
return in terms of the factor loadings and state variables as

H(r,z,7,9) := Ho(7,0) + H.(7,0)r + H,(7,0) 2, (2.22)
where

Ho(r,8) := {A(T) — A(T—8) +

Sl

(7% — 1) By (1 — )0, + ("= — 1) B.( — 8 92}
/(7.0) = < {Bo(r) — e ? B(r )}

H =5
Ho(7,6) = % [B.(r)~ 0 B.(r— )}

Note that for 7 = §, the expected holding-period return is simply the yield to
maturity for the bond: H(r, z,0,0) = Y(r,z,0). We can measure excess expected
holding-period premium as follows: H(r,z,7,0) — Y (r, z,d). The factor loading on
the interest rate for excess expected returns is given by

= BT(T) _ Br(é) — e—ﬁré BT‘(T - 5)

Note that for 7 > 4, sign[¢,(7, §)] = sign|[x, — &,]. The empirical finding that excess
expected holding period returns is increasing in the interest rate requires s, > &,.2

Ur(1,9)

3. FORWARD RATES AND THE FUTURE SHORT RATE

Consider the forward rate as a predictor of the future short-term interest rate.
The relationship fits the classical errors-in-variables model. Since the short rate is
Markovian, its conditional expectation depends only on its current value, (t). But
forward rates depend on both r(¢) and the independent variable z(t).

2See Hooker (1997) for an empirical investigation of holding-period returns.
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The theoretical regression coefficient equals
Cov[r(t+ 1), f(t,t+7)]
Var[f(t,t + 7)] ’

where Var[-] and Cov[-, -] are the unconditional variance and unconditional co-
variance operators. Let’s look at the numerator first:

Cov[r(t+7), f(t,t+7)] = Cov[Ei[r(t + )], f(t,t+ T)]
= e~ (B RIT Var[r(¢)]

(et <0’_2> ,
2 Ky

—Ras 7')2

Now let’s look at the denominator:
/K\ZQ (6—ET T

Var[f(t,t +7)] = e 27 Var[r(t)] + = ¢

(/’52 - Er>2

e (G, BT e R
2K, (R, — Rp)? 2k, )

Putting these together and rearranging a bit, we get

B(r) =

Var[z(t)]

e(’l{y«*lﬂr) T

- (Iir 02) /K\?z GQHTT/EG_HTAT _ e—nzﬂ')

K, 02 (Rr — R2)?
Note that 3(0) = 1. The expectations hypothesis implies that 3(r) = 1 for all 7.
There are two channels through which the expectations hypothesis gets violated in
(3.1). First, in the numerator of (3.1), K, # k,. Second, and more importantly,
in the denominator of (3.1) the second factor is present. (If we constrain the price
of z-risk to be zero, (3.1) remains correct after changing K, to x.. In this case we
are free to let o, go to zero, which makes z deterministic and eliminates the second
channel.) The standard way of modeling the price of risk in a term structure model
with Gaussian state variables eliminates both channels.

(3.1)

4. CAMPBELL—SHILLER REGRESSIONS

Campbell and Shiller (1991, CS hereafter) estimated two sets of regressions in-
volving the yield spreads. These tests of the expectations hypothesis are somewhat
indirect.

The first set of regressions. Let Gy(7—¢, T —t) and f1(7 —t,T —t) be regression
coefficients indexed by 7 —t and T'—t for t < 7 < T'. In the first set of regressions,
the change in a zero coupon yield is regressed on the slope of the yield curve:
y(r,T) —y(t,T) = Po(tr —t, T —t)+ Bi(r —t, T —t)s(t, 7,T) +v(t,7,T), (4.1)
where
T—1

s(t,m.T) = <T — T) (vt.1) = y(t.7))

is the (weighted) slope of the yield curve.
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We can take the same approach as before. We need to find

_ COV[y(Tv T) _ y(t7 T)? S(t, T, T)]
Pt =, T—1)= Var[s(t. 7. T)] '

Let’s start by thinking about the numerator:

COV[y(T, T) - y(t, T)? S(t, T, T)] =

(; - i) Cov[Ely(r,T)] —y(t, T), y(t,T) — y(t,7)]. (4.2)

If changes in the slope of the yield (changes in y(¢,7) — y(t,7)) are driven largely
by changes in the risk premia, and if those risk premia are mean reverting, then
Ey(r,T)] will not move much in response to a change in the risk premia, and the
covariance on the right-hand side of (4.2) will be negative. In the current model,
the price of risk is driven by z. An increase in z leads to an increase in the slope
of the curve. This can be seen from the factor loading for z for zero-coupon bonds,
which equals zero at 7 = 0 and increases. Since z moves independently of r, and
reverts to its mean, an increase in z leads to an increase in the slope of the curve
but does not increase expected future yields by as much. The effect z has on the
yield curve (either forward rates or zero-coupon rates) relative to r diminishes as
the maturity goes to zero. In the limit, of course, z has no effect.

Fisher and Gilles (1996b) derive expressions for the regression coefficients for
generic exponential-affine models. Let

B(T)Z<§ZE:;> and @(7):(6_8” 62”).

The regression coefficients can be written as follows (suppressing the arguments
T—tand T —t):

Bo =mo — by po+ (71 — b1 p1) 6 (4.3a)
ﬁ1:1+b1:1+252, (4.3b)
where
polr — £, T — 1) = (Ti7> ((;_i) A(T—t)—A(T—t)>
p(r—t, T —1) = (Ti7> ((;:i) B(T—t)—B(T—t)>
and
WO(T—t,T—w:( i7> (AT —7)+ Alr 1)~ AT — 1

+ B(T—7) (I - &(r ~1))0)

1
T—1

) ((15(7 —)TB(T —7)+B(r —t) — B(T - t)).
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For the weak form to hold, we need V7 = 0. As before, there are two channels
through which the weak form of the expectations hypothesis can fail.

0. 08;
0. 075
0.07;

0. 065/

0. 06

0. 055;

0 5 10 15 20 25 30
maturity in years

FIGURE 1. The average zero-coupon curve (solid) and forward rate
curve (dashed).

0. 8¢
0.6
0.4}

0.2}

0 0.5 1 1.5 2
maturity in years

FIGURE 2. ((7) in the regression of the future short-term interest
rate on the current forward rate.

The second set of regressions. Let A := (T —t)/n. CS regress what they call
the “perfect-foresight spread,”
n—1

%Z{y(t—}—iA, t+(i+1)A) -yt t+ A},
=1
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2.5 5 7.5 10 12.5 15 17.5 20
maturity in years

FIGURE 3. Campbell-Shiller slope coefficient [(11,72) for 71 =
1,...,5and o = [ + 1/12,20].

on a measure of the slope of the yield curve,
y(t7 T) - y(tv i+ A)
For simplicity, I will take the limit as A — 0, producing:

fT r(s) —r(t)ds

s=t —
T3 and y(t,T) —r(t).

Adding r(t) to each of these expressions and multiplying by 7" — ¢ produces

T T
/s r(s)ds and /s:tf(t,s)ds.

=t

Using expressions for Ey[r(s)] and f(t, s), we can calculate the asymptotic regression
coefficients for these regressions as well.

5. ESTIMATES

I estimated the model using the maximum likelihood technique developed by
Chen and Scott (1993) and described in Fisher and Gilles (1996a). The data are
end-of-month zero-coupon yields from December 1988 to November 1997, extracted
from coupon bond prices using the technique described in Fisher, Nychka, and
Zervos (1995). I chose the 1- an 10-year yields to be measured without error and
the 2-, 3-, and 30-year yields to be measured with an ad hoc measurement error.>

3Since the state variables are Gaussian, the model can be estimated consistently with the Kalman
filter (which is surely a more aesthetically appealing technique that the one used here). I plan to
do so in the future.
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~

0, 0, Ky K oy o, 0, Ry R
0.059 0.202 0.217 0.228 0.010 0.099 0.107 0.046 0.376
(0.009) (0.101) (0.157) (0.148) (0.001) (0.020) (0.007) (0.006) (0.049)

TABLE 1. Estimated structural parameters (and asymptotic stan-
dard errors).

Table 1 shows the parameter estimates for the model.* From the asymptotic
standard errors (in the second row), it is evident that 0., k., and k. are not well-
measured by the data.

The average zero-coupon and forward rate yield curves are shown in Figure 1.
The coefficient 5(7) is plotted in Figure 2. The Campbell-Shiller slope coefficients
are shown in Figure 3.

APPENDIX A. THE STATE-PRICE DEFLATOR

In this appendix, I present the state—price deflator that produces the interest rate
and price of risk in the model. The state—price deflator is given by n(t) = {(t)/u(t)
where u is the value of a bubble asset and { is an exponential martingale. In
particualr,

u(t) = exp (at + B r(t) + B2 2(t))

d
%) = g(r(t). 2(t) TAW (1)
with ¢(0) = 1, where
2 2
a=0, - % (Z— + Z) . Bi=—1/k, and By =—1/i.,

and

o(r,2) = L(r, 2) + <"’“/ "‘) .

or /Ry

By applying Ito’s lemma to n(t), one can show that the interest rate is r(¢) and the
price of risk is A(t) = L(r(t), z(t)).?

4The estimates of the measurement-error parameters are given in the table below, where 0., p. and
pt refer to the standard deviation of the measurement errors, their cross-sectional autocorrelation,
and their serial autocorrelation. (The asymptotic standard errors are in the second row.)

O¢ Pc Pt
0.0007 0.290 0.708
(0.0000) (0.059) (0.031)

5This model has no neutrino factor (i.e., the neutrino factor is constant). See Fisher and Gilles
(2000).
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