MAXIMUM ENTROPY ON A SIMPLEX: AN EXPOSITORY NOTE

MARK FISHER

Preliminary and incomplete

ABSTRACT. The Gibbs distribution f(z) = eiAT”/Z()\) for x = {z1,...,2,} defined over
the region where z; > 0 and )}, x; < 1 characterizes the maximum entropy distribution
on a simplex subject to E[x] = p. An explicit representation for Z()) is derived.

1. PRELIMINARIES

Let # = {x;} | where z; > 0 and ;" ;z; < b for some b > 0 and define z,4; :=
b— 7"zt Then ¥ := {z;}7*! lies on an n-dimensional (generalized) simplex denoted
AP, Let A" = A} denote the n-dimensional (ordinary) simplex. We can express any
function §(Z) = g(z1,. .., Tn, Tnt1) subject to zpy1 =b—> " @i as g(x) = g(z1, ..., 2y) =
g(x1,...,2n,b— > 1" | ;). Moreover, ng g(z)dx = ng g(x) dx, which can be computed as
follows. Let w = {wq,...,w,} be a permutation of {1,...,n}, so that w is a list of indices
in some fixed order. Then?

b b—24, b—Z;’;ll T,
ng g(z)dr = {da:wl 6[ ATy, - 6[ dzxy, g(T). (1.1)

The order of integration in (1.1) is from right to left; i.e., from x,,, first to x,,, last.
Let f(z) denote the joint probability density for 2 so that [,, f(x)dx = 1. Let y denote
the mean of x,

u=(x) := FElz] = /n x f(z)dz, (1.2)

and let X’ denote the covariance matrix of z,

S =Bl —p) (-] = ElzaT] - pu’ = / (¢a7) F@)de —pu”,  (13)

n

where 2T denotes the transpose of z, so that X;; = Elx; ;] — p; pj = (xi z;) — () ()2
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Ufp = 0, then x,,4+1 = b.

2We are using the notation [dz1 [dz2 g(z1,22) = [[ g(@1,22) dza dz1 on the right-hand side of (1.1).

3The mean of Tn41 is given by pnt1 = 1 — Z?zl wi. The covariance between x,4+1 and z; equals
— 2?21 Xi; and the variance of zn41 equals Y 7, Z?:1 Xij-
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The classic distribution for  on A"™ is the Dirichlet distribution, for which

P (s o)

S S — - n— n -1

7 T P T (= T )T (1.4)
=1 7

where «; > 0. In this note we consider an alternative distribution.

fz) =

2. MAXIMUM ENTROPY DISTRIBUTIONS

Here we outline the derivation of the maximum entropy distribution for x over a generic
region R.* In Section 3 we will specialize to R = A”™.
The object is to find the continuous function f that maximizes the entropy

H=- /R log(f(x)) f(x) da (2.1)

subject to [ q(z) f(z)dz =0 and [, f(z) dx = 1 where ¢(z) is a vector function of z and
0 is given. (We will be especially mterested in g(x) = z.) To this end, form the Lagrangian

£ [toats@n s0ras -7 ( [ atw) s ae-0) o ([ swras-1), @2

where A\ = {)\i}le is a vector of Lagrange multipliers, ¢ is a scalar Lagrange multiplier,
and 6 is a k-dimensional vector. To apply the calculus of variations, express (2.2) as

L= / g(z, f(x))dz + (\T0+¢), (2.3)
R
where
g(z,y) = —log(y)y — (A Ta()) y — vy (24)
In this case, the first-order (Euler-Lagrange) condition is dg(x,y)/dy = 0, or”
—log(f(z)) =1 - ATg(x) —p =0. (2.5)
Exponentiating both sides of (2.5) and rearranging produces®
f(z) = e~ (1+0)=ATq(x) (2.6)
Define
/ e al (2.7)
R
Since [, f(x)dx = 1, we have elt¥ = Z()\), and we obtain the Gibbs distribution
f(z) = Wa (2.8)

1Gee J aynes (2003) for a discussion of maximum entropy.
50ne would obtain this condition if one differentiated £ with respect to the ‘probabilities’ f(z), treating
f dx as a summation operator.

6The second order (Legendre) condition for a maximum is 8?g(z,y)/0y> < 0, which is satisfied since

—f(@)™!
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where Z()\) is known as the partition function.”

Define
m(\) == —Vylog (Z(\)) and  S(\):=Vilog (Z(\)). (2.10)
We now show that m()\) = 6 and S(\) = E[q(z) q(z)"] —66":

AT ol
L2 -V fpe Vi@ dg fp (~Vae 1) da

m(A) = Z(\) - Z(N) - Z(N)
_ Jrat@)e )dl’_/ (z) f(x)dz =6 (2.11)
Z(N) B Rq$ Ve '
and
z) e al@) ) e )
=Sty = [ B [ (et

e_)‘Tq(x)

= /R (a@) a@)" = al@)mN)T) oy = /R (a@)a@)") f@)dz— 067, (212)
For ¢(z) = x, we have m(\) = p and S(\) = X.

Two illustrations. Consider the following two illustrations for which n = 1. First, let
g(z) = 21 and let R = [0, 00). In this case Z(\) = A\]'. We can solve m(\) = 0 for § = \[*.
Consequently, \; e M 71 = e~ ! /6 is the exponential distribution.

Second, let g(x) = (z1,2?)" and let R = (—o0,00). In this case
AT/(42)
_ M, (2.13)
VA2
Letting 6; = p and 0y = p? + 02, we can solve m()\) = 6 for
W 1
)\1 = —; and )\2 = ﬁ (214)
and consequently we obtain the Gaussian distribution:
2
e—)\l r1—A2 x% e—% (2 5
Z(N) N V2ro 15)

We note that Ao equals one-half the precision 1/0? and A1 equals the negative of the mean
times the precision.

"The density for z is related to the density for  as follows. Define X = {)\ } . Then, for z,4+1 =
1=>7" @, (@ = e g/ Sane A gz = e ®/Z(A) = f(x), where \i = A — )\n+1 More generally, let
A9 =X\ {\;} and 29 := 7\ {z;}. Then

e*(x(j)**j)%m

(A= fDzihy==__ - )
) = 106 = S 29)
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Likelihood. Given N independent observations {X;} ;, the likelihood for \ is

N N e—ATg(Xz A7 N
ITrx) 70 <Z(A)> : (2.16)

i=1 =1

where g = + El 1 9(X5). The log-likelihood is

o\ = —N ()\Tg +log (Z()\))) . (2.17)

Thus
Vi(A) =—-N (§ + Vylog (Z(A))) =-N (§ — m()\)) (2.18)
V3(\) = —N Vilog (Z(\)) = =N S(\). (2.19)

The maximum likelihood value for A can be computed by solving V AE(X) =0 for A =
m_l( ) 8 In addition, the Gaussian approximation to the likelihood is proportional to

N ~ ~ ~
exp (—5 (A=X)"S0) (A— A)) , (2.20)
where N=1 .S (X)_1 is the covariance matrix for A. The maximum likelihood value for § =

(g(x)) is = m(}) =7. R
If g(z) = x, the maximum likelihood value for § = p is @ = m(/\)

_° - N Zz 1 Xi and
the Gaussian-approximation covariance matrix for y is N~ .S(m (7))

Marginal and conditional distributions. Here we suppose ¢(z) = x.
Partition the set of indices I = {1,...,n} into a and 3, where «UfS =1 and a N = &.
Let o = {x; : i € a}, 23 = {z; : i € §}, etc. The marginal distribution of z, is

e~ MaTa T e aa Z()\g aza)
f(z)dxs = / e N dy g = 7 (2.21)
/ SERAPY ’ Z()
Rﬁ(wa ’Rﬁ(xa)
where Rg(x,) denotes the domain of zg as a function of x, and
Z(Ag xq) = / e 80 dzg. (2.22)
Rp(za)
Therefore, the distribution of xg conditional on z, is
.
fla)  eho s
flxg | xza) = = , 2.23
( 7 ’ ) f($a) Z(/\ﬁa$a) ( )
8Given z = {21,...,2n} where z; > 0 (for i = 1,...,n) and Sz < 1, m™'(z) exists and is unique.

(Need to show this.)
9Note that A maximizes the entropy of the distribution given pu = X.
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which evidently is the maximum entropy distribution for xz over Rg(z,) subject to the
conditional mean

M8z = / zg f(zg | o) drg = —V, log (Z()\g,xa)). (2.24)
Rp(Ta)

3. MAXIMUM ENTROPY ON A SIMPLEX

First we deal with a possible source of confusion. The set T can be interpreted as a
discrete probability measure, the entropy of which is — Z?jll x; log(x;). This is distinct
from the entropy of Z, namely — [, f(Z) log (f(Z)) dZ = — [x. f(z) log (f(z)) dz, that we

are interested in here.'9

Computing the normalization constant. Here we specialize to R = A™ and ¢(z) = =.

Define
G = / e N7y = (H /\i) - Z(Ai NPT — Ai)) : (3.1)
Ap i=1 i=1 j=1
j#i
and let ((A) := (1(A). Given R = A", we have Z(\) = ((\) and thus
e—ATx
F@) = (32)
Given this solution, the first-order series expansions for Z(\) and m;(\) around A = 0 are
BN DY SPY 2
Z(\) = Y + O(X%) (3.3)
mi(\) =1 +O(\?). (3.4)

Tl it Pt lP it ) (n+2)

Define my11(A) :==1—=>_7; mi(A). Then fi,41 = mp41(X). The first-order series expansion
for my,41(\) around A = 0 is
1 doici Ai
ni1(A) = =1 O(\?). 3.5

In fact, \; =0 <= m;(\) = mp11(N).

10Nevertheless, the relative entropy of the discreet distribution can be used as a prior for Z (just as the
maximum entropy distribution can). Consider
~ ntl
W@) = =Y wi log(wi/m),
i=1

~ . 1 . .
where m = {ml7 RN mn+1} is some base measure such that m; > 0 and Zzlil m; = 1. We can write this as

h(z) = h(Z)

Now let f(z) = e h(”)/fAn e“"(®) dz be the distribution for z, where o > 0 is a scalar parameter that

controls how tightly the distribution is concentrated around its mode at x = m.
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Marginal and conditional distributions. Let s, = Ziea x; and let ng denote the
number of elements in 3. Given R = A", it follows that Rg(z,) = A" s, and therefore
Z(AgsTa) = Ci—sa (Ag)- (3.6)

Consequently (2.21) and (2.23) become

e Ha o C1-s,(Ag)

To) = 3.7
(o) =5 (3.7
and
Fa | 2a) = 22 (38)
3| T4) = ———. .
& Cl—sa (Aﬁ)
In particular, note
—)\Txﬁ
Flag |0 =0)= (3.9)
C(Ag) 7
for which the conditional mean is
:u'mﬁ\(mQZO) = m()‘,@) (310)

Drawing from the distribution. We can draw from the joint distribution via the Gibbs
sampler, drawing cyclically from the univariate conditional distributions. Let f = {i}.

Then
e~ N Ti i e~ N Ti

s (N 1 e N0

where f(z; | v—;) = f(23 | ) and s_; = s,. Define the conditional cdf

1 _ oA T
F(z; | x_ / ftlx—; ¢ - (3.12)
for z; <1 — s_;. Solving F(x;|z_;) = u for z; produces

= -\ "log (1+ (e (1=s=i) _ 1) )

flai |z—;) = (3.11)

:(1—s_i)u_%(1_8_2,)2@6(1_“”#0@?)' (3.13)

We can obtain independent draws from f(z;|z_;) via independent draws of u ~ U (0, 1). By
initializing the Gibbs sampler at u, the target distribution appears to be reached in about
n draws.

Alternative representations for the distribution of . In addition to f ( ) there n

ways to represent the distribution of = {z1,...,z,11}: f(z9)) for j = 1,...,n, where
z\) = {:Egj), e ,:c,(f)} denotes the vector where x,,11 replaces x; in x:

i . .
Ip+1 =]

NON {fﬂz iF] (3.14)
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Note that z; = 1 — >, :EZ(-j). Changing variables from z to z() produces f(:z:(j)) =
e_)‘(j)T””(j)/C()\(j)), where A7) = {)\gj), . ,)\Slj)} and

AZQ):{AZ-—AJ- #q (3.15)
—Aj =]

Note that p; =1—> ", ugj), where p) = m(\0)). Moreover, for i € {1,...,n}\ {j},
m(\) = m(\9)).

As an example, let n = 1. Given f(z1) = e M1 /((\1), then f(x3) = eM®2/((—)\;) and
m(—)\l) =1- m()\l)

We can use these alternative representations to compute the marginal distribution of

().
Tn4+1 = xj :

f(w§j)) = (3.16)

(0)
To condition‘ on a subset of Z that includes x,1, first change variables to () for some j
such that :E((lj ) is the appropriate subset and then apply (3.8):

_Agﬁxg)
. _ e
fag |a) = ———- (3.17)
C1_s§j)()‘6 )
In particular, for azg ) —
ENORNG!
GG — ) = & o
flag’ [zd’ =0) = (3.18)

¢

4. OTHER REGIONS

We can apply the foregoing to other regions. Consider the region of stationarity for an
autoregressive process: A(L) z; = &;, where g; ~ iid N(0,02) and A(L) = 1—21 L —a5 L* —
... —x, L™ is a polynomial in the lag operator. The region of stationarity is characterized
by those z € R™ such that all of the roots of A(L) = 0 lying outside the unit circle. For
n=1we have —1 < x1 <1 and for n =2 we have 1 + 20 < 1l and -1 <29 <1+ z71. In
this latter case,
e2rith (A — X)) + er2—2M (A1 4+ A2) — 2 6_)‘2/\1

Z(\) = T . (4.1)

With A\ = 0 and Ay = —1.344 we obtain u; = pg = 0.
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