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Preliminary and incomplete

Abstract. The Gibbs distribution f(x) = e−λ⊤x/Z(λ) for x = {x1, . . . , xn} defined over
the region where xi ≥ 0 and

Pn

i=1 xi ≤ 1 characterizes the maximum entropy distribution
on a simplex subject to E[x] = µ. An explicit representation for Z(λ) is derived.

1. Preliminaries

Let x = {xi}n
i=1 where xi ≥ 0 and

∑n
i=1 xi ≤ b for some b ≥ 0 and define xn+1 :=

b −∑n
i=1 xi.

1 Then x̃ := {xi}n+1
i=1 lies on an n-dimensional (generalized) simplex denoted

∆n
b . Let ∆n ≡ ∆n

1 denote the n-dimensional (ordinary) simplex. We can express any
function g̃(x̃) = g̃(x1, . . . , xn, xn+1) subject to xn+1 = b−∑n

i=1 xi as g(x) = g(x1, . . . , xn) :=
g(x1, . . . , xn, b−

∑n
i=1 xi). Moreover,

∫
∆n

b
g̃(x̃) dx̃ =

∫
∆n

b
g(x) dx, which can be computed as

follows. Let w = {w1, . . . , wn} be a permutation of {1, . . . , n}, so that w is a list of indices
in some fixed order. Then2

∫
∆n

b
g(x) dx =

b∫
0

dxw1

b−xw1∫
0

dxw2 · · ·
b−
Pn−1

i=1 xwi∫
0

dxwn g(x). (1.1)

The order of integration in (1.1) is from right to left; i.e., from xwn first to xw1 last.
Let f(x) denote the joint probability density for x so that

∫
∆n f(x) dx = 1. Let µ denote

the mean of x,

µ = 〈x〉 := E[x] :=

∫

∆n

x f(x) dx, (1.2)

and let Σ denote the covariance matrix of x,

Σ = E[(x − µ) (x − µ)⊤] = E[xx⊤] − µ µ⊤ =

∫

∆n

(
xx⊤

)
f(x) dx − µ µ⊤, (1.3)

where x⊤ denotes the transpose of x, so that Σij = E[xi xj] − µi µj = 〈xi xj〉 − 〈xi〉 〈xj〉.3
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1If n = 0, then xn+1 = b.
2We are using the notation

R
dx1

R
dx2 g(x1, x2) ≡

RR
g(x1, x2) dx2 dx1 on the right-hand side of (1.1).

3The mean of xn+1 is given by µn+1 = 1 −
Pn

i=1 µi. The covariance between xn+1 and xi equals

−
Pn

j=1 Σij and the variance of xn+1 equals
Pn

i=1

Pn

j=1 Σij .
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The classic distribution for x on ∆n is the Dirichlet distribution, for which

f(x) =
Γ
(∑n+1

i=1 αi

)

∏n+1
i=1 Γ(αi)

xα1−1
1 · · · xαn−1

n (1 −∑n
i=1 xi)

αn+1−1, (1.4)

where αi > 0. In this note we consider an alternative distribution.

2. Maximum entropy distributions

Here we outline the derivation of the maximum entropy distribution for x over a generic
region R.4 In Section 3 we will specialize to R = ∆n.

The object is to find the continuous function f that maximizes the entropy

H = −
∫

R
log(f(x)) f(x) dx (2.1)

subject to
∫
R q(x) f(x) dx = θ and

∫
R f(x) dx = 1 where q(x) is a vector function of x and

θ is given. (We will be especially interested in q(x) = x.) To this end, form the Lagrangian

L = −
∫

R
log(f(x)) f(x) dx − λ⊤

(∫

R
q(x) f(x) dx − θ

)
− ϕ

(∫

R
f(x) dx − 1

)
, (2.2)

where λ = {λi}k
i=1 is a vector of Lagrange multipliers, ϕ is a scalar Lagrange multiplier,

and θ is a k-dimensional vector. To apply the calculus of variations, express (2.2) as

L =

∫

R
g(x, f(x)) dx +

(
λ⊤θ + ϕ

)
, (2.3)

where

g(x, y) = − log(y) y −
(
λ⊤q(x)

)
y − ϕy. (2.4)

In this case, the first-order (Euler–Lagrange) condition is ∂g(x, y)/∂y = 0, or5

− log(f(x)) − 1 − λ⊤q(x) − ϕ = 0. (2.5)

Exponentiating both sides of (2.5) and rearranging produces6

f(x) = e−(1+ϕ)−λ⊤q(x). (2.6)

Define

Z(λ) :=

∫

R
e−λ⊤q(x) dx. (2.7)

Since
∫
R f(x) dx = 1, we have e1+ϕ = Z(λ), and we obtain the Gibbs distribution

f(x) =
e−λ⊤q(x)

Z(λ)
, (2.8)

4See Jaynes (2003) for a discussion of maximum entropy.
5One would obtain this condition if one differentiated L with respect to the ‘probabilities’ f(x), treatingR

R
dx as a summation operator.
6The second-order (Legendre) condition for a maximum is ∂2g(x, y)/∂y2 < 0, which is satisfied since

−f(x)−1 < 0.
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where Z(λ) is known as the partition function.7

Define

m(λ) := −∇λ log
(
Z(λ)

)
and S(λ) := ∇2

λ log
(
Z(λ)

)
. (2.10)

We now show that m(λ) = θ and S(λ) = E[q(x) q(x)⊤] − θ θ⊤:

m(λ) =
−∇λZ(λ)

Z(λ)
=

−∇λ

∫
R e−λ⊤q(x) dx

Z(λ)
=

∫
R

(
−∇λe−λ⊤q(x)

)
dx

Z(λ)

=

∫
R q(x) e−λ⊤q(x) dx

Z(λ)
=

∫

R
q(x) f(x) dx = θ (2.11)

and

S(λ) = −∇λm(λ) = −∇λ

∫

R

q(x) e−λ⊤q(x)

Z(λ)
dx =

∫

R

(
−∇λ

q(x) e−λ⊤q(x)

Z(λ)

)
dx

=

∫

R

(
q(x) q(x)⊤ − q(x)m(λ)⊤

) e−λ⊤q(x)

Z(λ)
dx =

∫

R

(
q(x) q(x)⊤

)
f(x) dx − θ θ⊤. (2.12)

For q(x) = x, we have m(λ) = µ and S(λ) = Σ.

Two illustrations. Consider the following two illustrations for which n = 1. First, let
g(x) = x1 and let R = [0,∞). In this case Z(λ) = λ−1

1 . We can solve m(λ) = θ for θ = λ−1
1 .

Consequently, λ1 e−λ1 x1 = e−θ−1 x1/θ is the exponential distribution.
Second, let g(x) = (x1, x

2
1)

⊤ and let R = (−∞,∞). In this case

Z(λ) =
eλ2

1/(4 λ2)√π√
λ2

. (2.13)

Letting θ1 = µ and θ2 = µ2 + σ2, we can solve m(λ) = θ for

λ1 = − µ

σ2
and λ2 =

1

2σ2
(2.14)

and consequently we obtain the Gaussian distribution:

e−λ1 x1−λ2 x2
1

Z(λ)
=

e−
(x1−µ)2

2 σ2

√
2π σ

. (2.15)

We note that λ2 equals one-half the precision 1/σ2 and λ1 equals the negative of the mean
times the precision.

7The density for x is related to the density for ex as follows. Define eλ := {eλi}
n+1
i=1 . Then, for xn+1 =

1−
Pn

i=1 xi, ef(ex) = e−
eλ⊤ex/

R
∆n e−

eλ⊤ex dex = e−λ⊤x/Z(λ) = f(x), where λi = eλi − eλn+1. More generally, leteλ(j) := eλ \ {λj} and ex(j) := ex \ {xj}. Thenef(ex) = f (j)(ex(j)) =
e−(eλ(j)

−λj)
⊤ex(j)

eλj Z(eλ(j) − λj)
. (2.9)



4 MARK FISHER

Likelihood. Given N independent observations {Xi}N
i=1, the likelihood for λ is

N∏

i=1

f(Xi) =

N∏

i=1

e−λ⊤g(Xi)

Z(λ)
=

(
e−λ⊤g

Z(λ)

)N

, (2.16)

where g = 1
N

∑N
i=1 g(Xi). The log-likelihood is

ℓ(λ) = −N
(
λ⊤g + log

(
Z(λ)

))
. (2.17)

Thus

∇λℓ(λ) = −N
(
g + ∇λ log

(
Z(λ)

))
= −N

(
g − m(λ)

)
(2.18)

∇2
λℓ(λ) = −N ∇2

λ log
(
Z(λ)

)
= −N S(λ). (2.19)

The maximum likelihood value for λ can be computed by solving ∇λℓ(λ̂) = 0 for λ̂ =
m−1

(
g
)
.8 In addition, the Gaussian approximation to the likelihood is proportional to

exp

(
−N

2

(
λ − λ̂

)⊤
S(λ̂)

(
λ − λ̂

))
, (2.20)

where N−1 S(λ̂)−1 is the covariance matrix for λ. The maximum likelihood value for θ =

〈g(x)〉 is θ̂ = m(λ̂) = g.

If g(x) = x, the maximum likelihood value for θ = µ is µ̂ = m(λ̂) = X = 1
N

∑N
i=1 Xi and

the Gaussian-approximation covariance matrix for µ is N−1 S(m−1(X)).9

Marginal and conditional distributions. Here we suppose q(x) = x.
Partition the set of indices I = {1, . . . , n} into α and β, where α∪ β = I and α∩ β = ∅.

Let xα = {xi : i ∈ α}, xβ = {xi : i ∈ β}, etc. The marginal distribution of xα is

f(xα) =

∫

Rβ(xα)

f(x) dxβ =
e−λ⊤

α xα

Z(λ)

∫

Rβ(xα)

e−λ⊤

β
xβ dxβ =

e−λ⊤
α xα Z

(
λβ , xα

)

Z(λ)
, (2.21)

where Rβ(xα) denotes the domain of xβ as a function of xα and

Z
(
λβ, xα

)
:=

∫

Rβ(xα)

e−λ⊤

β
xβ dxβ. (2.22)

Therefore, the distribution of xβ conditional on xα is

f(xβ | xα) =
f(x)

f(xα)
=

e−λβ
⊤xβ

Z
(
λβ, xα

) , (2.23)

8Given z = {z1, . . . , zn} where zi > 0 (for i = 1, . . . , n) and
Pn

i=1 zi < 1, m−1(z) exists and is unique.

(Need to show this.)
9Note that bλ maximizes the entropy of the distribution given µ = X.
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which evidently is the maximum entropy distribution for xβ over Rβ(xα) subject to the
conditional mean

µβ|xα
=

∫

Rβ(xα)

xβ f(xβ | xα) dxβ = −∇λβ
log
(
Z
(
λβ, xα

))
. (2.24)

3. Maximum entropy on a simplex

First we deal with a possible source of confusion. The set x̃ can be interpreted as a
discrete probability measure, the entropy of which is −

∑n+1
i=1 xi log(xi). This is distinct

from the entropy of x̃, namely −
∫
∆n f̃(x̃) log

(
f̃(x̃)

)
dx̃ = −

∫
∆n f(x) log

(
f(x)

)
dx, that we

are interested in here.10

Computing the normalization constant. Here we specialize to R = ∆n and q(x) = x.
Define

ζb(λ) :=

∫

∆n
b

e−λ⊤x dx =
( n∏

i=1

λi

)−1
−

n∑

i=1

(
λi e

λi b
n∏

j=1
j 6=i

(λj − λi)
)−1

, (3.1)

and let ζ(λ) := ζ1(λ). Given R = ∆n, we have Z(λ) = ζ(λ) and thus

f(x) =
e−λ⊤x

ζ(λ)
. (3.2)

Given this solution, the first-order series expansions for Z(λ) and mi(λ) around λ = 0 are

Z(λ) =
1

n!
−
∑n

i=1 λi

(n + 1)!
+ O(λ2) (3.3)

mi(λ) =
1

n + 1
+

∑n
j=1 λj

(n + 1)2 + (n + 1)3
− λi

(n + 1) (n + 2)
+ O(λ2). (3.4)

Define mn+1(λ) := 1−∑n
i=1 mi(λ). Then µn+1 = mn+1(λ). The first-order series expansion

for mn+1(λ) around λ = 0 is

mn+1(λ) =
1

n + 1
+

∑n
i=1 λi

(n + 1)2 + (n + 1)3
+ O(λ2). (3.5)

In fact, λi = 0 ⇐⇒ mi(λ) = mn+1(λ).

10Nevertheless, the relative entropy of the discreet distribution can be used as a prior for ex (just as the
maximum entropy distribution can). Considereh(ex) = −

n+1X
i=1

xi log(xi/mi),

where em = {m1, . . . , mn+1} is some base measure such that mi > 0 and
Pn+1

i=1 mi = 1. We can write this as

h(x) = eh(ex)
��� xn+1=1−

Pn
i=1 xi

mn+1=1−
Pn

i=1 mi

Now let f(x) = eα h(x)/
R
∆n eα h(x) dx be the distribution for x, where α ≥ 0 is a scalar parameter that

controls how tightly the distribution is concentrated around its mode at x = m.
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Marginal and conditional distributions. Let sα =
∑

i∈α xi and let nβ denote the

number of elements in β. Given R = ∆n, it follows that Rβ(xα) = ∆
nβ

1−sα
and therefore

Z(λβ, xα) = ζ1−sα(λβ). (3.6)

Consequently (2.21) and (2.23) become

f(xα) =
e−λ⊤

α xα ζ1−sα(λβ)

ζ(λ)
(3.7)

and

f(xβ | xα) =
e−λ⊤

β
xβ

ζ1−sα(λβ)
. (3.8)

In particular, note

f(xβ | xα = 0) =
e−λ⊤

β
xβ

ζ(λβ)
, (3.9)

for which the conditional mean is

µxβ |(xα=0) = m(λβ). (3.10)

Drawing from the distribution. We can draw from the joint distribution via the Gibbs
sampler, drawing cyclically from the univariate conditional distributions. Let β = {i}.
Then

f(xi | x−i) =
e−λi xi

ζ1−s−i
({λi})

=
λi e

−λi xi

1 − e−λi (1−s−i)
. (3.11)

where f(xi | x−i) ≡ f(xβ | xα) and s−i ≡ sα. Define the conditional cdf

F (xi | x−i) :=

∫ xi

0
f(t|x−i) dt =

1 − e−λi xi

1 − e−λi (1−s−i)
(3.12)

for xi ≤ 1 − s−i. Solving F (xi|x−i) = u for xi produces

xi = −λ−1
i log

(
1 + (e−λi (1−s−i) − 1)u

)

= (1 − s−i)u − 1

2
(1 − s−i)

2 u (1 − u)λi + O(λ2
i ).

(3.13)

We can obtain independent draws from f(xi|x−i) via independent draws of u ∼ U(0, 1). By
initializing the Gibbs sampler at µ, the target distribution appears to be reached in about
n draws.

Alternative representations for the distribution of x̃. In addition to f(x) there n
ways to represent the distribution of x̃ = {x1, . . . , xn+1}: f(x(j)) for j = 1, . . . , n, where

x(j) = {x(j)
1 , . . . , x

(j)
n } denotes the vector where xn+1 replaces xj in x:

x
(j)
i =

{
xi i 6= j

xn+1 i = j.
(3.14)
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Note that xj = 1 − ∑n
i=1 x

(j)
i . Changing variables from x to x(j) produces f(x(j)) =

e−λ(j)⊤x(j)
/ζ(λ(j)), where λ(j) = {λ(j)

1 , . . . , λ
(j)
n } and

λ
(j)
i =

{
λi − λj i 6= j

− λj i = j.
(3.15)

Note that µj = 1 −
∑n

i=1 µ
(j)
i , where µ(j) = m(λ(j)). Moreover, for i ∈ {1, . . . , n} \ {j},

m(λ) = m(λ(j)).
As an example, let n = 1. Given f(x1) = e−λ1 x1/ζ(λ1), then f(x2) = eλ1 x2/ζ(−λ1) and

m(−λ1) = 1 − m(λ1).
We can use these alternative representations to compute the marginal distribution of

xn+1 = x
(j)
j :

f(x
(j)
j ) =

e−λj x
(j)
j ζ

1−x
(j)
j

(λ
(j)
−j)

ζ(λ(j))
. (3.16)

To condition on a subset of x̃ that includes xn+1, first change variables to x(j) for some j

such that x
(j)
α is the appropriate subset and then apply (3.8):

f(x
(j)
β | x(j)

α ) =
e−λ

(j)
β

⊤

x
(j)
β

ζ
1−s

(j)
α

(λ
(j)
β )

. (3.17)

In particular, for x
(j)
α = 0

f(x
(j)
β | x(j)

α = 0) =
e−λ

(j)
β

⊤

x
(j)
β

ζ(λ
(j)
β )

. (3.18)

4. Other regions

We can apply the foregoing to other regions. Consider the region of stationarity for an
autoregressive process: A(L) zt = εt, where εt ∼ iid N(0, σ2) and A(L) = 1−x1 L−x2 L2−
. . . −xn Ln is a polynomial in the lag operator. The region of stationarity is characterized

by those x ∈ R
n such that all of the roots of A(L) = 0 lying outside the unit circle. For

n = 1 we have −1 < x1 < 1 and for n = 2 we have x1 + x2 < 1 and −1 < x2 < 1 + x1. In
this latter case,

Z(λ) =
e2λ1+λ2 (λ1 − λ2) + eλ2−2λ1 (λ1 + λ2) − 2 e−λ2λ1

λ1

(
λ2

1 − λ2
2

) . (4.1)

With λ1 = 0 and λ2 = −1.344 we obtain µ1 = µ2 = 0.
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