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ABSTRACT. Two properties of asset prices have often been associated with risk-
neutrality: (a) the expected return on all assets equals the risk-free rate (the
expected-return property) and (b) the value of an asset equals the present value
of the expectation (under the physical measure) of its payoff (the certainty-
equivalent property). In this paper, we show the following: (i) the two prop-
erties are equivalent when interest rates are deterministic but mutually exclusive
when interest rates are stochastic, (#) an economy of risk-neutral investors who
consume only at a single point of time in the future will support the certainty-
equivalent property, (#iz) the distribution that can be uncovered using options
prices is associated with the certainty-equivalent property, (iv) the distribution
associated with the expected-return property cannot be uncovered using option
prices when interest rates are stochastic, although they can be uncovered from
futures prices on options that expire on the delivery date. We provide an em-
pirical investigation of the relationship between these measures in the context of
multi-factor models of the term structure.

1. INTRODUCTION

The idea of risk-neutral pricing dates back to the analysis of the option prices
by Cox and Ross (1976). They address a class of models in which interest rates are
deterministic. They propose what amounts to the Feynman—Kac solution technique
to the partial differential equation (PDE) derived by Black and Scholes (1973). Cox
and Ross (1976) note that since this PDE does not involve any risk-preference
parameters, any assumption about risk preferences that leads to a solution is valid.
As they say (p. 153):

A convenient choice of preferences ... is risk neutrality. In such a world
equilibrium requires that the expected returns on [assets] must equal the
riskless rate.
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This property of asset prices has been widely associated with risk-neutrality in the
asset pricing literature.! We refer to this property as the expected-return property.
Because interest rates are deterministic in their setting, Cox and Ross (1976) were
able to derive a representation for asset prices in terms of the present value of
a certainty equivalent. This property, too, has been widely associated with risk-
neutrality. We refer to this property as the certainty-equivalent property.

However, as Cox, Ingersoll, Jr., and Ross (1981, CIR) point out, these properties
do not necessarily follow from risk neutrality when when interest rates are stochastic.
They make the following observation regarding the expected-return property:

Since there are no term premiums in this formulation, many authors have
been lured into referring to it as the “Risk-Neutral Expectations Hypoth-
esis.” In fact, [it] is not a consequence of universal risk-neutrality ... .

Indeed, CIR show that risk-neutrality itself—as commonly modeled—produces de-
terministic interest rates. In addition, CIR show that in an economy with both
risk-neutral agents and stochastic interest rates, there is a risk premium built into
expected returns. In particular, they derive the expected rate of return for zero-
coupon bonds when risk-neutral investors consume only at a single point of time in
the future. They also describe conditions under which the expected-return property
holds absent risk neutrality.

In the meantime, the basic notions of risk-neutral pricing were extended to more
general settings by Harrison and Kreps (1979). Modern asset pricing theory can be
characterized as equivalent martingale pricing, since deflated asset prices are mar-
tingales under an equivalent measure. Moreover, it turns out that options prices can
be used to uncover the distribution of the underlier one such equivalent martingale
measure. It has been asserted that if the representative individual were risk neutral,
then we could identify this distribution with the physical measure and use it, for
example, to calculate market expectations.

To establish the link between asset prices and risk preferences, the following char-
acterization of the absence of arbitrage is useful: There exists a state-price deflator
with the property that deflated asset prices are martingales under the physical
measure.? Thus the properties of asset prices are related to the properties of the
state-price deflator. Under fairly general conditions, the state-price deflator can
be interpreted as the marginal utility of wealth (or, absent corner solutions, the
marginal utility of consumption).

In this paper, we show the following: (i) the two properties are equivalent when
interest rates are deterministic and they are mutually exclusive when interest rates
are stochastic, (i7) the link between the certainty-equivalent property and risk neu-
trality is robust, but the agent’s preferences are quite unappealing (risk-neutral

Except in a one-good, one-date economy, risk neutrality is an ambiguous notion. See various cites
[to be included].
2Duffie (1996, chapter 6).



RISK-NEUTRAL PRICING AND RISK NEUTRALITY 3

investors consume only at a single point of time in the future), (éii) the distribu-
tion that can be uncovered using options prices is associated with the certainty-
equivalent property, (iv) the distribution associated with the expected-return prop-
erty cannot be uncovered using option prices when interest rates are stochastic,
although they can be uncovered from futures prices on options that expire on the
delivery date.

The analysis of this paper amounts to an application of equivalent martingale
measure pricing. The rest paper is organized as follows. First, we take the existence
of a state-price deflator as our starting point and derive the absence-of-arbitrage
condition for the expected return under the physical measure, and we show that the
expected return depends on the numeraire. Second, we show by normalizing asset
prices with the value of a given asset, one can generate an equivalent measure as-
sociated with that deflator—asset under which deflated asset prices are martingales.
Thus different deflator—assets generate different measures with different represen-
tations for asset prices and different dynamics for asset prices under its associated
measure. Third, we characterize two important equivalent martingale measures—
the futures measure (associated with the money-market account) and the forward
measure (associated with a zero-coupon bond). The two are identical when inter-
est rates are deterministic. Fourth, we show the relationship between the futures
measure and the Feynman—Kac solution technique, and we show how the futures
measure can be uncovered with futures prices and the forward measure can be
uncovered with forward prices (or options prices). Fifth, we examine risk-neutral
pricing in terms of the futures and forward measures when interest rates are random.
Each of the two measures has a claim to the title: Under the futures measure the
expected return on assets equals the risk-free rate, while under the forward measure
asset prices equal the present value of a certainty equivalent. Finally, we illustrate
these points with a multi-factor model of the term structure.

2. THE STATE-PRICE DEFLATOR

Absence of arbitrage. Let V(t) be a security price process and Y (¢) be a deflator.
A deflator is a strictly positive process. Then a deflated security price process is
given by V(t)Y(¢t). The absence of arbitrage is equivalent to the existence of a
state-price deflator m(t) where, for all s > t, deflated asset prices are martingales
under the physical measure:

EL[m(s) V(s)] = m(t) V (¢). (2.1)

We note in passing that if markets are complete, the state-price deflator is unique
given the numeraire.
Since m(t) is strictly positive, we can write its process as

% = pm(t) dt + o (t) T AW (1), (2.2)
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where W (t) is a vector of orthogonal Brownian motions under the physical mea-
sure P. We suppose that V(¢) is the value of an asset that pays no dividends.?
Then we can write

dV (t) = fiy (t) dt + Gy (t) TdW (t), (2.3)

where the bars over iy (t) and gy (t) indicate that these are absolute rather than
relative drifts and volatilities. We assume there is a money-market account with
value process df3(t) = r(t) 5(t)dt, where r(t) is the instantaneous risk-free rate.

Note that we can write 3(t) = exp (fot r(u) du), given (5(0) = 1.

Given the dynamics of m(t) and V' (¢), Ito’s lemma gives the dynamics for m(t) V' (t)
as

A(m(t)V(©)) = m(®) { v (t) + () V(E) + om(®) ov (1)} dt +

m(t) {om(t) +ov ()} dW(t). (2.4)

The absence of arbitrage as characterized by (2.1) implies that the drift of m(t) V(t)
in (2.4) is zero. Thus we have

v (t) = —pm() V(t) = am(t) 'ov (). (2.5)
Applying (2.5) to the money-market account produces g, (t) = —r(t). In addition,
it is conventional to define the market price of risk as A(t) :== —o,,(t). With this
change of notation, we can write (2.2) as dm(t)/m(t) = —r(t)dt — \(t)TdW ().
Moreover we can write (2.5) as

v (t) = () V(t) + A1) Tav (t), (2.6)
Note that if V'(¢) is strictly positive, we can write (2.6) as
v (t) = () + M) Tov (2), (2.7)

where py (t) := py(t)/V(t) and oy (t) := oy (t)/V(t). Equation (2.7) states that
the expected return equals the risk-free rate plus a risk-premium that depends on
the negative of the conditional covariance of the asset’s return with the state-price
deflator.

Changing the numeraire. Suppose we change the numeraire by deflating by
another deflator, Y (¢). Let asset values denominated in the new units be denoted

by V(t) := Y (t) V(t). Note that (2.1) implies

EL[m(s) V(s)] = m(t) V(2), (2.8)
where m(t) := m(t)/Y (t) is the state-price deflator for the new numeraire. There-
fore we can write the absence-of-arbitrage condition in terms of the new numeraire
as fig:(t) = 7(t) V() + A(t) '3 (t), and the dynamics of the new state-price deflator
can be expressed in terms of the short rate and price of risk denominated in terms
of the new numeraire: dm(t)/m(t) = —7(t)dt — \(t)TdW (t).

3V (t) can be thought of as the value of a self-financing trading strategy under which any dividends
paid are reinvested.
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It is natural to use this set up when m(t) is the state-price deflator denominated in
domestic currency, m(t) is the state-price deflator denominated in foreign currency,
in which case Y (t) is the foreign exchange rate. Another natural use is when m(t)
is the state-price deflator denominated in real terms, while m(t) is the state-price
deflator denominated in nominal terms, in which case Y (¢) is the price level.

From a modeling perspective, we are free to choose any two of {m(t), m(t),Y (t)}
as exogenous and derive the dynamics of the third using Ito’s lemma. For some
purposes it is convenient to treat the processes for m(t) and m(t) as exogenous and

derive the process for y(t) :=log(Y (t)) = log(m(t)/m(t)):
Ay(t) = 1y (8) dt + o, (1) AW (1),

where
pt) = 70) (1) — 5 (IROI ~ 7)) (2.92)
and
oy (t) = A(t) — A(2). (2.9b)

See, for example, Sad-Requejo (1994). Note that we can rewrite (2.9) as
~ 1
F() =r(t) + my(t) + 5 oy (O + AE) "oy (8). (2.10)

Equation (2.10) can be interpreted as either (i) the relationship between nominal
(7) and real (r) interest rates, which involves expected inflation (1), the variance
of inflation (||oy|?) and a risk premium (A'oy,), or (ii) the relationship between
foreign (7) and domestic (r) interest rates, which involves expected exchange-rate
depreciation, and so forth.

3. EQUIVALENT MARTINGALE MEASURES AND DEFLATOR—ASSETS

Deflator—assets. Let z(t) be the value of a strictly positive asset that pays no
dividends over the relevant period (a self-financing trading strategy). Since z(t) is
strictly positive, we can write its process as dz(t)/z(t) = u-(t)dt + o.(t) T dW (t).
Define &,(t) := m(t) z(t). Since z(t) is the value of an asset, we have by (2.7)

dg-(t)
§-(t)

where 0,(t) := A(t) — 0,(t). Given the absence of arbitrage and (3.1), we can define
an equivalent measure Q, using Girsanov’s Theorem as follows:

= —0.(t) "dW (1), (3.1)

dW.(t) = dW (t) + 0.(t) dt, (3.2)

where W,(t) is a vector of standard, independent Brownian motions under Q..
The dynamics under Q. of an arbitrary variable X (¢) can be easily found given its
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dynamics under P using (3.2):
dX (t) = fiz(t) dt + Gx (t) dW (1)
fiz () dt +Gx ()" (dW.(t) — 0.(t) dt) (3.3)
= (px(t) — ox(t)T0:(t)) dt + ax (t) T dW.(2).

We now show that Q, is an equivalent martingale measure. Let Y (t) = z(t)™!
be a deflator and consider the deflated asset price V,(t) = V(¢) Y (t) = V(¢)/z(t).
We refer to z as the deflator—asset. 1to’s lemma gives the process for V,(¢) under
the physical measure P:

dV.(t) = 0.(t) "oy, (t) dt + Gy, (t) TdW (¢), (3.4)
where oy, (t) = oy (t) — 0.(t). Using (3.3) and (3.4) we can write
dv.(t) = v, (t) TdW.(t),
which shows that asset values deflated by Y (t) = z(t)~! are martingales under the
equivalent measure Q..* Thus, for s > t, we have
Va(t) = B [Va(s)]. (35)

Also note that £,(t) is the (conditional expectation of the) Radon-Nikodym de-
rivative: &,(t) = E] [dQ,/dP].5 In particular, we have
_ EPI(s) X(5)

£:(t)

for any time-s measurable random variable X (s). Applying the same reasoning as
above, it can be shown that

E2=[X(s)] (3.6)

B2 [(¢(s)/2(5)) X(5)]
Ccw/=0)

where Q. is an equivalent martingale measure associated with the deflator-asset ¢.

E[X(s)]

(3.7)

Representation and dynamics of asset values. Given the equivalent martin-
gale measure associated with a given deflator—asset, we can rewrite (3.5) to get a
representation of asset prices under Q.:
z(t)
V(t)=E2 | == V(s)|. 3.8
(0= 52 |20 Vo) (35
Note that (3.8) is valid for z(¢) = 1/m(t), in which case Q, = P. Let P(t, s) denote
the price at time t of a default-free zero-coupon bond that pays one unit at time s.
Then the term structure of interest rates has the following representation:

P(t,s) = E2* {%} . (3.9)

4We have just shown that it is sufficient for the deflator to be the inverse of a strictly positive asset
value. We show necessity in the Appendix.
®See Duffie (1996, chapter 6 and appendix D).
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Although all equivalent martingale measures give the same value for an asset (as
they must by construction), they do not imply the same dynamics for asset prices
under their respective measures. In particular, using (2.3), (2.6), and (3.2), we have

AV (t) = (r(t) V(t) + o.(t) "oy (b)) dt + av (1) TdW.(¢). (3.10)
Again, if V (t) is strictly positive, we can write the expected return under Q, as
r(t) + o.(t) oy (t). (3.11)

Equation (3.11) shows that the expected return on an asset under an equivalent
martingale measure equals the risk-free rate plus a premium equal to the conditional
covariance of the asset’s return with that of the deflator—asset. Thus, only if the
deflator—asset is predictable—i.e. only if 0,(t) = 0—will expected returns under
Q. equal the risk-free rate.

4. THE FUTURES MEASURE AND THE FORWARD MEASURE

Two equivalent martingale measures that are particularly useful are the futures
measure and the forward measure. These measures are associated with deflators
derived from the money-market account and from a zero-coupon bond that matures
on a given date, respectively.

The futures measure Qg is associated with z(t) = B(¢). The representation for
asset values under Qg is

V(t) = B2 [% V(s)} S [exp <— /t () du) V(s)} , (4.1)

and the term structure is given by

Plt,s) = E% {exp (- /t () duﬂ . (4.2)

Note that under Qg, expected returns equal 7(t) for all assets since o, (t) = 0 when
the money-market account is the deflator asset. The futures measure thus embodies
the expected-return property.

The forward measure Q. is associated with

ot _{P(t,T) ifs<r
) exp ([Pr(u)du) ifs>T.

Note that under Q, we have, for s < T,

P(t,T) 1
t) = E2" ’ = P(t,7) EZ Vi(s)|. 4.3
Vi =B | D ve)| = P B | g ). )
For payoffs at time 7 we have a particularly simple expression:

V(t) = P(t,7) B2 [V(7)]. (4.4)

The forward measure thus embodies the certainty-equivalent property.
If we apply (4.4) to the money-market account and rearrange, we obtain

P(tl,T) = EtQT [%} = EtQT {exp (/S;r(s) ds)} ) (4.5)
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The term structure does not have a particularly useful representation under Q,:

_ o |_1
P(t,s) = P(t,7) E; |:P(S,T):| ,
for s < 7. Note that expected returns under Q. are not equalized across assets;
rather there is a risk premium that depends on oy () op(t,7), the conditional
covariance of an asset’s return with the return on the bond that matures at time 7.
Note that the two measures are different unless op(¢,7) = 0, in which case interest
rates are deterministic and

g((?) = 1];((2277-_)) = exp (— /tST(U) du) ;

so that the two measures are identical. In other words, if interest rates are deter-
ministic, the two properties are equivalent, while if interest rates are stochastic, the
two properties are inconsistent.

Forward prices and futures prices. Let the forward price at time t for delivery
of Y(7) at time 7 be denoted F'(¢,7), where Y (7) is any time-7 measurable random
variable. The forward price is what makes the value of the forward contract zero.
Thus, for the futures measure, solving

E % (Y(r) = F(t,7))| =0, (4.6)
for F(t,7) yields
Q T
Flt.r) = E lexp (= [ r(u) du) Y(T)]' (47)

P(t, 1)

If Y(t) = V(t) is the value of an asset that pays no dividends, then F(t,7) =
V(t)/P(t, 7). By contrast, for the forward measure we have

ES[P(t,7)(Y(r) — F(t,7)] = 0, (4.8)
which produces
F(t,7) = E2"[Y(7)]. (4.9)

Comparing either (4.9) and (4.4) or (4.7) and (4.1), we see that forward prices
can be expressed as the ratio of two asset values. Also note that even though the
representations for F(t,7) given in (4.7) and (4.9) in terms of the expectations are
different, the values for F'(t,7) are identically equal.

Contrast the forward price with the futures price F(t,7). Under the futures
measure we haveS

F(t, )= EX[Y (7)), (4.10)

See Duffie (1996, chapter 8).
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while under the forward measure we have, by (3.7),
Flt.m) = B[V (7))
_ B [(B(r)/P(r,7)) Y(7)]
~ (Bw/PE) (4.11)
= P(t,7) E2" [exp (/tTr(t) du) Y(T):| .

Note that unless interest rates are deterministic, futures prices bear no simple rela-
tionship to asset values.

5. MARKOVIAN STATE-VARIABLE REPRESENTATIONS

The futures measure and the Feynman—Kac solution. In this section, we
suppose the economy can be characterized by a finite number of state variables X ().
Thus we will write V(t) = V(X(t),t), r(t) = r(X(t)), and A\(t) = A(X(¢)), where
V(z,t), r(z), and A(x) are functions of z. The absence of arbitrage is characterized
by (2.6), which—in a state-variable setting—we can write as

av(X(1),1) = AMX (@) av (X (1), 1) = (X (1) V(X(1),1). (5.1)
Let dynamics of X (t) be given by
dX (t) = ix (X (1)) dt + ax (X (t)) TdW(¢). (5.2)
Then Ito’s lemma gives
AV () = fiv (X (8),8) dt + 7 (X (), ) TaW (1),

where

iy (z,t) = fix(x) Ve, t) + % tr [Vm(:v,t) ax(z) ax(x)| — Vi(z,t) (5.3a)

and
ov(z,t) =ox(z) Vy(z,t), (5.3b)
where tr[a] is the trace of matrix a, and where
oV(x,t)
Vi(z,t) := —————
t(xa ) ot ’
OV (z,t) PV(zt) . 82V(xt)
d11 aw% 0z 0xy
Ve(z, t) = : , and  Vpg(z,t) = : ) :
OV (x,t) 9%V (x,t) 0%V (z,t)
CEY dzgox T 923

Using (5.3), we can write the absence-of-arbitrage condition (5.1) as a partial
differential equation:

iy (2) T Vy(z,t) + % tr [Vm(aj, tox(z) ax(x)| — Vi(z,t) = r(z)V(z,t), (5.4)



10 MARK FISHER AND CHRISTIAN GILLES

where

fux () = fx(z) — ox(2) 'Az). (5.5)

Note that if X () is a vector of asset values (for assets that pay no dividends),
then by (2.6) [ix(X(¢)) = 7(X(¢)) X(t), in which case (5.4) is a preference-free
characterization of V (x,t)—it does not depend on the market price of risk A.

We can obtain equation (5.4) from a different measure. In particular, if the
dynamics for the state-variables were given by

dX(t) = fix (X () dt + o (X (1)) TdW (1), (5.6)
where
AW (t) = dW (t) + A(t) dt.
The Feynman—Kac solution to (5.4) is given by

V(z,t) = E [exp (- /t ) (X (u)) du) V(X (s), s)] : (5.7)

where E, indicates that X is assumed to solve (5.6).7 Note that the Feynman-—
Kac solution technique is formally identical to valuing securities using the futures
measure.

The the Feynman—Kac solution (5.7) involves the entire path of the short rate,
which is not, in general, representable as a function of the state variables X.% As
such, as long as interest rates are not deterministic, it is only really a solution in
the sense that it provides a guide to Monte Carlo techniques.

The induced distributions of state-variables. In this section, we show how to
use forward and futures prices to uncover the distribution of a state variable under
the futures and forward equivalent martingale measures at some fixed time 7 in the
future.

For simplicity, we will consider a single state variable. Consider the following
payoff at time 7: max{X(7) — K,0}, where X is the single state variable we are
interested in.? The expectation of this payoff can be expressed in terms of the
distributions on X (7) induced by the respective equivalent martingale measures:

E/lmax{X (1) — K,0}] = /K Oo(x — K) f'(z)dz, (5.8)

where i € {Q,, 9} and fi(z) is the induced (conditional) density of X*(7) under
i. Differentiating both sides of (5.8) twice with respect to K produces

2 .
881(2 Emax{X(7) — K,0}] = —f'(K). (5.9)

"See Duffie (1996, chapter 5 and appendix E).

80ne can, of course, always expand the set of state-variables (to the set of paths, for example) to
obtain such a representation. But this state-variable setting would lose its structural appeal.
9The payoff max{K — X(1),0} would work just as well.
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Recall the representations (4.9) and (4.10) for the forward and futures prices, re-
spectively, and let Y (7) = max{X(7) — K,0}. Then we using (5.9) we can write

82

-3 F(t,7) = f<(K) (5.10a)
and
2
_Wﬂt’ T) = fQﬂ(K) (5.10b)

In other words, forward prices on the payoff max{K — X (7),0} can be used to reveal
the distribution of X (7) induced by the forward measure, while futures prices on the
same payoff can be used to reveal the distribution induced by the futures measure.

Let C(X(t), K) be the value of a European call option on X that expires at time
7 with strike price K. Note that C(X(7), K) = max{K — X (7),0}. Thus we can
interpreted F'(t,7) and F(t,7) as forwards and futures on options that expire on
the delivery date. Moreover, recall that the value of an asset with a given payoff is
closely related the futures price associated with that payoff. In particular, applying
(4.4), we have

C(X(t), K) = P(t,7) B2 [C(X(7), K)]. (5.11)
Therefore, European options prices can be used to reveal the distribution of X (7)
induced by the forward measure:

1 & o,
TP WC(X@)?K) = [~ (K).

There is, however, no corresponding simple relationship between the futures price
of a payoff and asset value of the payoff that allows us to use options prices directly
to uncover the distribution of X (7) induced by the futures measure (except when
the two measures coincide).'®

6. RISK-NEUTRALITY AND RANDOM RATES

We wish to consider economies where interest rates are random. The first point
to make is that it is not obvious how “risk neutral” investors determine asset prices
in general. With regard to this issue, Cox, Ingersoll, Jr., and Ross (1981) note,
among other things, that in the most natural case risk neutrality itself implies that
interest rates are deterministic.

For example, consider an economy where at any time ¢ consumers maximize the
expected utility of their consumption plan, given by

/t Tu(c(s), ) ds} .

The term “risk-neutral” often applies to investors whose utility function is linear
in consumption: u(c(t),t) = e Pt h(t)c(t), where h(t) is strictly positive. In this

Ef

10Should we say something about how the the forward measure is closely related to the Green’s
function, which is also known as the fundamental solution to the PDE. ... 7
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economy, the state-price deflator is given by the marginal utility of wealth:'! m(t) =
ue(c(t), t) = e Pt h(t). Given the positivity of h(t), we can write
dm(t) = (un(t) — p) dt + on(t)TdW (t). (6.1)
m(t)
where p(t) and op(t) are the drift and volatility of dh(t)/h(t). By inspection of
(6.1), we see that r(t) = p — up(t) and A(t) = —op(t).

Clearly, the implications of risk-neutrality (as characterized in this setting) de-
pend on the dynamic properties of h. The typical assumption is that h is constant,
in which case the interest rate is constant and the market price of risk is zero. This
is the case that Cox, Ingersoll, Jr., and Ross (1981) discussed. This is also the set-
ting in which Cox and Ross (1976) characterized risk-neutral pricing. By contrast,
if A is not predictable (in other words, if o, (t) # 0), there is a non-zero market price
of risk in this economy of so-called risk-neutral investors.

The case of most interest to us at this point is when A is predictable but its drift
is random, so that we have random interest rates combined with no risk premiums.
This would seem to characterize risk-neutrality when interest rates are random: The
expected return on all assets equals the risk-free rate. The state-price deflator—asset
in this case is the money-market account: m(t)~! = 3(t). Note, however, that a
simple change of numeraire can destroy this feature. In other words, if there is no
risk premium in real terms, there will be one in nominal terms as long as the price
level is not deterministic. Conversely, if there were no risk premium in nominal
terms, it would be unlikely that there would be no risk premium in real terms, and
our link to preferences would be broken.

The forward measure as physical measure. As we have seen, the bond price
P(t,7) is a perfectly valid deflator—asset, and is associated with an equivalent mar-
tingale measure. It is natural to wonder if it is possible to construct an economy
in which Q; equals the physical measure P. The answer is yes: suppose that the
representative investor has a rigid horizon of 7, does not consume at any other time
and tries to maximize expected wealth at 7. The yardstick to measure the worth of
any investment prospect is the expected contribution to aggregate wealth at time 7.

With the tools developed above, it is easy to show that for CIR’s economy of
risk-neutral investors who consume only at a single point of time in the future,
P = Q.. In particular, note that CIR show that the marginal utility of wealth
(Q(Y,t) in their notation) equals the right-hand side of (4.5) (see their equation
(37)). Therefore, the state-price deflator for that economy is the inverse of the zero
coupon bond that matures at time 7.

Note that an investment at time ¢ that delivers a random payoff g(s) at time s < 7
is not worthless. Instead, its value V (¢) is'?

V(t)P(t,T)E,Z’[ 9(s) }

1See Duffie (1996, chapter 10).
12¢f (4.3).
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Note the use the physical measure to calculate expectation since the assumption is
that it is the same as Q.. This pricing formula has the natural interpretation that
the investor plans to reinvest the proceeds into the bond that matures at 7.13

Since the investor maximizes expected wealth, there is a good reason to call him
risk neutral. Therefore, a pricing system under which @, = P can reasonably be
called risk neutral. But note that under this definition, assets do not have equal
expected rates of return. As we have seen, the expected return offers a compensation
for risk, where the price of risk is the proportional volatility, op(t, 7), of the deflator—
asset P(t,T).

Note that changing the numeraire does not affect the salient features of this
economy: The representative investor’s rigid horizon does not depend on whether
asset prices are measured in real terms or nominal terms. Thus this notion of
risk-neutral pricing is as robust as it is unappealing.

Heath, Jarrow, and Morton (1992, HJM) derive the absence-of-arbitrage restric-
tion in terms of forward rates. Let the process for forward rates be given by

df(t,T) = pp(t, T)dt + o (t,T) T dW ().

The HJM absence-of-arbitrage restriction is

pr(t,T) = o5 (t,T)" ()\(t) +/s

T

=t

or(t,s) ds) ,
for all T > t. In this economy, A(t) = op(t,7) = — [[_, 0f(t,7) ds, and thus

(6, T) = —o (8, T)T / _olts)ds (6.2)

We see from (6.2) that forward rates for time 7 are martingales and therefore are
unbiased predictors of the spot rate at time 7. In other words, when the forward
measure is the physical measure, the unbiased expectations hypothesis holds for
time 7 only. On the other hand, (4.5) is the representation for bond prices under
the return-to-maturity hypothesis.!*

7. AN EMPIRICAL INVESTIGATION: THE TERM STRUCTURE

We use multi-factor CIR models of the term structure to investigate the differ-
ences among the measures with respect to the short-term interest rate.

The distributions in general. In this class of models, the instantaneous risk-
free rate equals the sum of unobserved, independent factors (or state-variables),
r(t) = Z?zl zj(t). We are interested in the distribution of r(s) conditional on
the z(t) for s > t. Under each of the three measures, the distribution of z;(s)
conditional on z;(t) is §; x(v;, n;) where §; is a constant and where x(v;,7;) is a non-
central chi-square variate with v; degrees of freedom and non-centrality parameter

T

13We have so far not considered payoffs that occur beyond 7. Investors will of course want to sell
at 7, and attach values to them.
0Of course, the two hypotheses cannot hold for all maturities simultaneously.
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The conditional distribution of the sum r(s) = Zle x;(s) can be obtained as
follows: The characteristic function of the sum of independent random variables is
the product of the univariate characteristic functions. As Chen and Scott (1995)
show, the characteristic function for 6; x(v;,n;) is given by

. /2 injud;
6,) = (1= 208, 1% exp { A
where ¢ = \/—1. The characteristic function for r(s) then is given by &(u) =
H;lzl ¢j(u). The distribution for r(s) is given by

Fr(s) [ 21(8), - zat)) = — /Ooe—”(s)“d)(u)du

=25 )
2 o
== /0 cos(r(s)u) R(P(u)) du,

where R(2@(u)) denotes the real part of @(u). The second equality relies on the
non-negativity of the x;.!%

The futures measure. The dynamics of the factors under Qg is given by

darj(t) = (aj + by (1)) dt + ¢ \ [ (£) AW (8),
where all of the Brownians are independent. Cox, Ingersoll, Jr., and Ross (1985)

showed that conditional on z;(t), for 7 > ¢, z;(7) is distributed as (5? X(Vj,?’]? )

where x(vj, 77[-3 ) is a non-central chi-square variate with v; degrees of freedom and

non-centrality parameter 77]@ , and where

4 b] ebj (t—t) 2 (ebj (r=t) _ 1)

da; c
S ) xj(t), and 5][-5 = 2 10
J

Vj— B

2 nj = & (b0 1

The physical measure. Now suppose the market price of risk is given by A;(t) =
(dj/c;) \/xj(t). Then the process for the short rate under the physical measure is
given by

dzj(t) = (aj + (bj — dj) z(t)) dt + c;j \/z;(t) AW (t).

The distribution for the short rate under the physical measure is the same as under
the futures measure, but with b; replaced by b; — d;.

The forward measure. To find the distribution for the short rate under the
forward measure in this economy, first note that zero-coupon bond prices are given
by

d

P(x,t,s) :exp{ —A(s—t)—ZBj(s—t) :Ej}, (7.1)

=1

15See Chen and Scott (1995) on this point.
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where the factor loadings, Bj(s — t), are given by

Bj(s —t) 2(n ) — 1) d wh Jbi+2¢2
i(s—1t) = and where = i +2c¢;.
’ (v +b;)(€7 570 = 1) + 2 POV
Equation (7.1) is the standard generalization of the one-factor bond pricing formula
in Cox, Ingersoll, Jr., and Ross (1985).

The relative volatility of the zero-coupon bond that matures at time 7 is given

by

—c1 Bi(T — t) \/z1(t)
op(t,7—1t) = :
—Cq Bd(T — t) xd(t)

Therefore, the change of in the drift of ;(¢) induced by the change of measure from

Qp to Q; is
—op(t,7 —t) ox(t) = ¢} Bj(r — t) z;(t),

so that the process for z;(t) under Q; is

dz;(t) = (aj + (b — 2 By(r — t))xj(t)> dt + ¢ \/x;(t) AW (1), (7.2)

Chen and Scott (1995) show that conditional on z;(t), z;(7) is distributed under
Q- as 47 2 (vj, 77]7-), where v; is given above and

2 (p? 6'7.7 (T_t)

T = zi(t) and &7 =2(p; + 1),
77] ©; ‘I‘?/J] ]( ) J (50] %)

where

2, and lbj:% L.

(e’Yj (T_t) — 1) C‘?

Yj =

&
Results. Figures 1-6 show the results. We took the parameters that are fit by Chen
and Scott (1993) for one-, two-, and three-factor CIR models using the McCulloch
data from the mid-1960s to 1987. The parameter values are shown in Table 1. The
figures show PDFs and CDFs for one-, five-, ten-, and thirty-year horizons. The
solid lines indicate Q,, the long dashes indicate P, and the short dashes indicate
Qp. The conditional distributions are evaluated at the unconditional means under
the physical measure as implied by the models, Z;. The three models put the mean
short rate in the neighborhood of five to six percent.

The results for the one-factor model are different from those of the two- and
three-factor models. For the one-factor model, Qg and Q; are essentially the same
at all horizons up to thirty years. The two equivalent martingale measures diverge
somewhat from the physical measure by the five-year horizon, but the divergence
does not increase beyond that. It has been widely documented that one-factor
models do a poor job of matching both the time-series and cross-sectional properties
of the term structure. Thus, there is reason to be skeptical about these results.

Now consider the results for the the two- and three-factor models. At the one-year
horizon, Qg and Q. are virtually indistinguishable from each and only moderately
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= _ —a
a b c d T =559

0.029 —0.424 0.082 —0.045 0.062

0.025 —0.647 0.131 -0.119 0.032
0.00002  0.041 0.053 —0.042 0.021

0.053 —-1.601 0.137 —0.032 0.032
0.00005  0.148 0.075 —-0.153 0.011
0.00006  0.131 0.184 -0.137 0.009

TABLE 1. Estimated coefficients for one-, two-, and three-factor CIR models

different from P. At the five-year horizon, the difference between the physical
measure and the two martingale measures is quite distinct, while the martingale
measures are still close to each other. At the ten-year horizon, the difference between
P and Qp is striking, and Q, has moved noticeably toward P. By the thirty-year
horizon, P and Q; are quite close, while Qg is quite far away.

8. CONCLUSION

We have described two equivalent martingale measures, the futures measure (as-
sociated with the money-market account) and the forward measure (associated with
a zero-coupon bond). Both measures are useful in representing asset values. Under
the futures measure, the expected return on assets equals the risk-free rate. This fea-
ture, however, has only a tenuous connection with risk-neutrality per se, especially
when returns are measured in nominal terms. Under the forward measure asset val-
ues equal the present value of a certainty equivalent. This feature can be associated
with risk-neutrality, but of an unappealing sort. Moreover, unless interest rates are
deterministic, the two measures are different, and therefore one cannot have both
features in an economy where interest rates are random. However, as our empirical
investigation revealed, for horizons up to a year at least, the difference between the
two equivalent martingale measures appears to be negligible. On the other hand,
for longer horizons (in the multi-factor models) the two measures diverge markedly,
and the forward measure tends to merge with the physical measure.

APPENDIX A. DEFLATORS THAT PRODUCE EQUIVALENT MARTINGALE MEASURES

In the body of the paper we showed that an equivalent martingale measure can
be constructed using a deflator that is the inverse of a strictly positive asset value.
In this Appendix we show that the inverse of any deflator that yields an equivalent
martingale must have the dynamics of an asset, thereby establishing the necessity
noted in the body.
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Let Y(t) be a strictly positive process, so that we can write

(o)

Y(t)

Let the process for the value of an asset, V(t), be given by (2.3) and (2.6), and let

& (t) :=Y (t) V(t) be the deflated value of an asset. The process for &y (t) is given
by

= py (t) dt + oy (t) TdW (2).

déy (t) = pe, (t) dt + o, () TdW (1),
where
pey (1) =Y (@) {V (@) (r(t) + py (@) +av (@) (A®) + oy (1))}
and

agy (t) = Y (t) {ov(t) + V(t) oy (1)}
Under an equivalent measure, the process for £y (t) is given by
dgy (t) = (U&Y (t) - Q(t)Tagy (t)) dt + O¢y (t)TdWY (t)

The question is this: Under what conditions is &y (t) a martingale for an arbitrary
asset V (t)? In other words, we seek the conditions under which

ey (1) — 0(t) T, (1) = 0 (A1)
for arbitrary oy (t) and V(t). Rearranging (A.1) produces
TN + oy () =0} + V(&) {r(t) + py(t) —0@) Tov(t)} =0.  (A.2)

The first term on the left-hand side of (A.2) implies 6’( ) = A(t) + oy (t). Using this
expression for 6(t), the second term implies

py (8) = —r(t) + A1) "oy (t) + [loy (1) (A.3)
Using (A.3), we can write the process for U(t) := Y (t)~! as
dg((t)) (r() + A(t) "oy (1)) dt + oy (t) "dW (L), (A.4)

where o (t) = —oy (t). Thus (A.4) shows that the inverse of Y (¢) has the dynamics
of an asset value.
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