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Abstract. This paper presents a Bayesian nonparameteric model for predictive density
estimation that incorporates order-statistic distributions into a Dirichlet Process Mixture
(DPM) model. In particular, the kernel is the density of the j-th order statistic given a
sample size of k from a continuous distribution Q. The model fixes the prior distribution
for j to be uniform conditional on k [i.e., p(j|k) = 1/k] with the consequence that the prior
predictive distribution equals Q (regardless of the prior distributions for k or the mixture
weights). The parameter k controls the precision of the kernel. In the limit as k →∞, the
kernel collapses to a Dirac delta function and the model specializes to a Dirichlet Process
(DP) model with base distribution Q for the remaining parameter (a rescaling of j/k that
preserves location). The model is completely determined by the prior predictive distribution
Q, the prior distribution for the precision parameter k, and the prior distribution for the
mixture weights.

The model presented in this paper may be interpreted as a more flexible version of that
in Petrone (1999) “Bayesian density estimation using Bernstein polynomials.”
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1. Introduction

This paper presents a Bayesian nonparameteric model for predictive density estimation
that incorporates order-statistic distributions into a Dirichlet Process Mixture (DPM) model.
In particular, the kernel is the density of the j-th order statistic given a sample size of k from
a pre-specified continuous distribution. The prior distribution for j is uniform conditional
on k, and consequently the pre-specified distribution is the prior predictive distribution. The
model is completed by specifying a prior distribution for k. (A prior for the concentration
parameter that affects the distribution of the stick-breaking weights may be specified as well.)

This paper is about density estimation using a mixture of beta distributions. (A simple
extension allows for two-dimensional density estimation.) Here are the main features: (1) the
approach to inference is Bayesian; (2) the parameters of the beta distributions are restricted
to the natural numbers; (3) the potential number of mixture components is unbounded; and
(4) the prior predictive density is part of the specification. As illustrations, the model is
applied to a number a standard data sets in one- and two-dimensions.

In addition, I show how to apply the model to latent variables via what I call indirect
density estimation. (In this context I introduce the distinction between generic and specific
cases.) To illustrate this technique, I apply this estimation technique to compute the density
of unobserved success rates that underly the observations from binomial experiments and/or
units. The results may be compared with those generated by an alternative model that has
appeared in the literature. (The alternative model is based on a a prior that is shown to be
a special case of the prior presented here.)

The model is related to the Bernstein polynomial model introduced by Petrone (1999a). To
make the comparison, let the prior predictive distribution be the uniform distribution over the
unit interval. Petrone’s model mixes over Bernstein polynomials of different degrees, where
each Bernstein polynomial is comprised of a complete set of Bernstein basis polynomials. By
contrast, the model presented here takes a multi-resolution approach, mixing directly over the
basis polynomials themselves of every degree. The potential number of mixture components
is unbounded. See Appendix A for a formal comparison of the two models.

Related literature. For asymptotic properties of random Bernstein polynomials, see Petrone
(1999b) and Petrone and Wasserman (2002). For a multivariate extension of Petrone’s model,
see Zhao et al. (2013). Other related literature includes Kottas (2006), Trippa et al. (2011),
and Quintana et al. (2009). Liu (1996) presents a related model in which the latent success
rates for binomial observations have a Dirichlet Process (DP) prior.

A closely-related paper is Canale and Dunson (2016) which presents a multi-scale approach
using Bernstein polynomials.1 See Appendix B for a comparison of their model with what is
presented here.

Outline. Section 2 presents the model. Section 3 describes a Markov chain Monte Carlo
(MCMC) sampler. Section 4 extends the model to the latent-variable case. Sections 6 and 7
present empirical results.

2. The model

Given n observations x1:n = (x1, . . . , xn), the object of interest is the predictive distribution
for the next observation:

p(xn+1|x1:n). (2.1)

1See also Canale (2017).
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Assume

xi
iid∼ p( · |ψ) for i = 1, 2, . . ., (2.2)

where ψ is an unobserved parameter. Then the predictive distribution can be expressed as

p(xn+1|x1:n) =

∫
p(xn+1|ψ) p(ψ|x1:n) dψ, (2.3)

where p(ψ|x1:n) is the posterior distribution for ψ, which can be expressed in terms of the
likelihood p(x1:n|ψ) =

∏n
i=1 p(xi|ψ) and the prior distribution p(ψ):

p(ψ|x1:n) ∝ p(x1:n|ψ) p(ψ). (2.4)

The model is completed by specifying p(xi|ψ) and p(ψ).
The predictive distribution p(xn+1|x1:n) summarizes what is known about xn+1 given the

observations x1:n. The parameter ψ is a conduit through which information flows from x1:n
to xn+1. Additional insight into the nature of the predictive distribution is provided in
Appendix C where it is compared and contrasted with a different object of interest.

Specification. Let f(xi|θc) denote a probability density function for xi ∈ R conditional on
a parameter θc. The density f( · |θc) is called the kernel. Let

p(xi|ψ) =

∞∑
c=1

wc f(xi|θc), (2.5)

where ψ = (w, θ) and w = (w1, w2, . . .) is an infinite collection of nonnegative mixture weights
that sum to one and θ = (θ1, θ2, . . .) is a corresponding collection of mixure-component
parameters. The structure of the prior for ψ is

p(ψ) = p(w) p(θ) = p(w)
∞∏
c=1

p(θc), (2.6)

where p(θc) is called the base distribution.
It remains to specify (i) the prior for the weights (which is relatively standard) and (ii)

the kernel and the base distribution (wherein the main novelty resides).

Prior for the mixture weights. The prior for w is given by

w ∼ Stick(α), (2.7)

where Stick(α) denotes the stick-breaking distribution given by2,3

wc = vc

c−1∏
`=1

(1− v`) where vc
iid∼ Beta(1, α). (2.8)

The parameter α is called the concentration parameter ; it controls the rate at which the
weights decline on average. In particular, the weights decline geometrically in expectation:

E[wc|α] = αc−1 (1 + α)−c. (2.9)

Note E[w1|α] = 1/(1 + α) and E
[∑∞

c=m+1wc|α
]

=
(
α/(1 + α)

)m
.

2The specification adopted here is equivalent to a Dirichlet Process Mixture (DPM) model. The model can
easily accommodate other stick-breaking priors. See Ishwaran and James (2001) for a general treatment of
stick-breaking priors.

3Start with a stick of length one. Break off the fraction v1 leaving a stick of length 1 − v1. Then break
off the fraction v2 of the remaining stick leaving a stick of length (1− v1) (1− v2). Continue in this manner.
Alternative stick-breaking distributions can be constructed by changing the distribution for vc.
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If α is small, then the first few weights will dominate and only a small number of mixture
components will be consequential; by contrast if α is large, then a large number of mixture
components will consequential.4

Prior for the concentration parameter. The concentration parameter plays an important role
in determining the flexibility of the prior for a given finite sample size n. As such, it may be
important to allow the data to help determine its magnitude. This will be done by specifying
a prior for α.

The kernel and the base distribution. The novelty lies in the combination of the kernel
and the base distribution. Consider a distribution Q for a continuous random variable defined
on the real line. Let Q(x) denote its cumulative distribution function (CDF) and let q(x) =
Q′(x) denote the associated density function. The kernel is given by5

f(xi|θc) = f(xi|jc, kc) = Beta
(
Q(xi)|jc, kc − jc + 1

)
q(xi), (2.10)

where θc = (jc, kc). One may verify that f( · |j, k) is the density for the j-th order statistic
given a sample size of k from the distribution Q. Thus p(xi|ψ) is an infinite-order mixture of
order-statistic densities. The base distribution is given by p(θc) = p(jc, kc) = p(jc|kc) p(kc),
where

kc ∼ Pk (2.11a)

jc|kc ∼ Uniform({1, . . . , kc}), (2.11b)

for some distribution Pk over the positive integers.
Given the prior independence of w and θ, the prior predictive distribution for xi is

p(xi) =

∫
f(xi|θc) p(θc) dθc = q(xi), (2.12)

where the last equality follows from the adding-up property of order-statistic distributions:

kc∑
jc=1

f(xi|jc, kc) p(jc|kc) =
1

kc

kc∑
jc=1

f(xi|jc, kc) = q(xi). (2.13)

The adding-up property says that an equally-weighted mixture of all kc of the order distribu-
tions equals Q. This may be seen as follows. Suppose one makes kc independent draws from
Q and sorts them from smallest to largest. If one then chooses one of the sorted draws at
random, the effect of the sorting is bypassed and the the choice is drawn from Q.

Summary. In summary, the model is completely determined by specifying (i) the predictive
distribution Q, (ii) the prior distribution for kc, and (iii) the prior for α.

4In order to understand the nature of the “concentration” that lends α its moniker, define the random
probability distribution G =

∑∞
c=1 wc δθc , where δθc is a point mass located at θc. The randomness of G

follows from w ∼ Stick(α) and θc
iid∼ H, where H is the base distribution. In other words, G is distributed

according to a Dirichlet Process: G ∼ DP(α,H). As a consequence, the mean of G is H, E[G] = H, and the
concentration of G around H is controlled by α. At one extreme for α, limα→0 G = δθ1 (where θ1 ∼ H), which
maximizes the variation of G around H. At the other extreme there is no variation at all: limα→∞ G = H.

5Beta(x|a, b) = xa−1 (1− x)b−1/B(a, b), where B(a, b) is the beta function.
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Priors adopted in the empirical section. In the empirical section I will adopt the following
prior for kc:

kc − 1 ∼ Geometric(ξ), (2.14)

where ξ ∈ (0, 1). Given this distribution, p(kc = 1) = ξ and E[kc] = 1/ξ. In addition, I will
adopt the following prior for α:

p(α) = Log-Logistic(α|1, 1) =
1

(1 + α)2
. (2.15)

This distribution does not have a finite mean; its median equals one. In passing note∫ ∞
0

(
α

1 + α

)m
p(α) dα =

1

1 +m
. (2.16)

Variation around the prior predictive. Both p(α) and p(kc) affect the variation of
p(xi|ψ) around q(xi). The concentration parameter works though its effect on the weights,
while kc works through its effect on the kernel (via the base distribution6). Variation can
be completely removed by either channel. Focusing on the concentration parameter, in the
limit as α→∞, no finite collection of weights dominates and consequently, regardless of the
distribution for kc,

7

lim
α→∞

p(xi|ψ) = q(xi). (2.17)

Turning to the effect of kc, if Pr[kc = 1] = 1, then every mixture component equals the prior
predictive distribution regardless of the weights:

p(xi|ψ) =
∞∑
c=1

wc Uniform(Q(xi)|0, 1) q(xi) = q(xi). (2.18)

To better appreciate the role of kc, let Q = Uniform(0, 1) so that Q(x) = x and q(x) = 1.
In this case the variance of xi ∼ Beta(jc, kc − jc + 1) is

jc (kc − jc + 1)

(kc + 1)2 (kc + 2)
. (2.19)

Averaging over jc, the prior expectation of the variance is

1

6 (kc + 1)
. (2.20)

As kc gets large, the variance of the kernel goes to zero. In the limit, the kernel becomes a
Dirac delta function and the model becomes a Dirichlet Process (DP) model. This feature
holds for any Q. See Section 5.

Features of the prior. It may be useful to understand some features of the prior. The prior
encodes both a willingness to learn (via dependence) and open-mindedness (via flexibility).

6This formulation of the the DPM allows one to change the base distribution without changing the predictive
distribution.

7As noted in Footnote 4, limα→∞ G = H, and H delivers the prior predictive distribution which has been
shown to be Q.
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Dependence. Dependence in the prior among the elements of x1:n is the key to the ability
to learn about xn+1 from x1:n. Without it there is no learning. We now examine how
this dependence is structured within the prior by focusing on the joint prior distribution for
(x1, x2):

p(x1, x2) = q(x1) q(x2) c
(
Q(x1), Q(x2)

)
, (2.21)

where c(u1, u2) is a copula density for (u1, u2) ∈ [0, 1]2.
In order to derive the copula, first note that

∑∞
c=1w

2
c is the probability that x1 and x2

share the same component and recall E[
∑∞

c=1w
2
c |α] = 1/(1 + α). Moreover, given the prior

for α [see (2.15)], the unconditional probability that x1 and x2 share the same component is∫ ∞
0

1

1 + α
p(α) dα =

∫ ∞
0

1

(1 + α)3
dα =

1

2
. (2.22)

Therefore, after integrating out w, α, and jc, we have

c(u1, u2) =
∞∑
kc=1

p(kc) c(u1, u2|kc), (2.23)

where c(u1, u2|kc) is an order-statistic-based copula density that depends on kc.
8 In particular,

c(u1, u2|kc) :=
1

2
+

1

2

kc∑
j=1

1

kc

2∏
i=1

Beta(ui|jc, kc − jc + 1) =
1

2
+
c̃(u1, u2|kc)

2
, (2.24)

where

c̃(u1, u2|kc) = kc
(
(1− u1) (1− u2)

)kc−1
2F1

(
1− kc, 1− kc; 1;

u1 u2
(1− u1) (1− u2)

)
(2.25)

and where 2F1 is the hypergeometric function. Note c̃(u1, u2|kc = 1) = 1 which in turn
implies c(u1, u2|kc = 1) = 1. For kc > 1, c̃(u1, u2|kc) provides positive dependence between
u1 and u2; the strength of the dependence increases with kc. In particular, the correlation
between u1 and u2 according to c̃(u1, u2|kc) is (kc − 1)/(kc + 1). Note that p(x1, x2|kc) =
q(x1) q(x2) c(Q(x1), Q(x2)|kc). See Figure 1 for a plot of p(x1, x2|kc = 10) assuming Q =
Uniform(0, 1) and Q = N(0, 1).

Open-mindedness. An open-minded prior allows for substantial variation around the prior
predictive distribution. The prior predictive distribution is given by q(xi). Variation around

it can be examined as follows. Make draws {ψ(r)}Rr=1 from the prior, where ψ(r) iid∼ p(ψ). The
prior predictive can be approximated by

p(xi) ≈
1

R

R∑
r=1

p(xi|ψ(r)). (2.26)

For a subset of the draws, plot p(xi|ψ(r)) to examine the amount and sort of variation. In
Figure 2, we display ten draws of the density p(xi|ψ) given Q(x) = x.

8See Baker (2008) for a treatment of copulas generated via order-statistics.
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Figure 1. Plots of p(x1, x2|kc = 10) assuming (a) Q = Uniform(0, 1) and (b)
Q = N(0, 1).
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Figure 2. Illustrating one aspect of an open-minded prior: p(xi|ψ) is plotted
for each of ten draws from p(ψ), assuming Q = Uniform(0, 1).
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Multi-dimensional predictive density. The extension of the model to d-dimensional ob-
servations is straightforward. Let xi = (xi1, . . . , xid), θc = (θc1, . . . , θcd), where θc` = (jc`, kc`)
for ` = 1, . . . , d. Define

Q(xi) :=
(
Q1(xi1), . . . , Qd(xid)

)
(2.27a)

q(xi) :=

d∏
`=1

q`(xi`), (2.27b)

where q`(xi`) is the PDF for the marginal prior predictive distribution for xi`. Let the kernel
be given by

f(xi|θc) =

d∏
`=1

Beta
(
Q`(xi`)|jc`, kc` − jc` + 1

)
q`(xi`). (2.28)

Note the local independence in the kernel. A model with local dependence given d = 2 is
described in Appendix D.

Let the base distribution be given by p(θc) =
∏d
`=1 p(θc`), where p(θc`) = p(kc`)/kc` and

where kc` ∼ Pk` . Consequently,
p(xi) = q(xi). (2.29)

The priors for w and α are unchanged.
Simple adaptations of the sampling scheme described in Section 3 allow one to make draws

of ψ in the d-dimensional case.

3. MCMC sampler

The model is equivalent to a Dirichlet Process Mixture (DPM) model. As such it may be
computed via any number of existing algorithms. For example, it is possible to use Algorithm
2 in Neal (2000) even though the base distribution is not conjugate relative to the kernel (see
below).

However, the simplest algorithm to describe and implement is the blocked Gibbs sampler
described in Gelman et al. (2014, pp. 552–553). This sampler relies on approximating p(xi|ψ)
with a finite sum: Choose m large enough to make

(
α/(1 + α)

)m
close enough to zero and

set vm = 1.
This sampler uses the classification variables z1:n = (z1, . . . , zn), where zi = c signifies xi

is assigned to cluster c. The Gibbs sampling scheme involves cycling through the following
full conditional posterior distributions:

p(z1:n|x1:n, w, θ, α) =
n∏
i=1

p(zi|xi, w, θ) (3.1a)

p(w|x1:n, z1:n, θ, α) = p(w|z1:n, α) (3.1b)

p(θ|x1:n, z1:n, w, α) =

m∏
c=1

p(θc|xc) (3.1c)

p(α|x1:n, z1:n, w, θ) = p(α|z1:n), (3.1d)

where xc is the collection of observations for which zi = c. Let Ic = {i : zi = c} and let
nc = |Ic|. Note

∑m
c=1 nc = n. We say that a cluster is not occupied if Ic = ∅ (i.e., if nc = 0).

The conditional distribution for zi is characterized by

p(zi = c|x1:n, w, θ) ∝ wc f(xi|θc), (3.2)
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for c = 1, . . . ,m. The weights w can be updated by updating the stick-breaking weights v
via

vc|z1:n ∼ Beta
(
1 + nc, α+

∑m
c′=c+1 nc′

)
(3.3)

for c = 1, . . . ,m− 1.
Regarding the concentration parameter, note that

p(α|z1:n) ∝ p(z1:n|α) p(α) ∝ αh Γ(α)

Γ(n+ α)
p(α), (3.4)

where h is the number of occupied clusters (i.e., clusters for which nc > 0). Draws from
p(α|z1:n) may be made using the Metropolis–Hastings scheme.

Sampler for θc. The sampler for θc|xc comprises three cases that depend on nc. In the first
two cases the draws are made directly from the posterior distribution. The third case involves
a Metropolis–Hastings step.

First, if nc = 0, then draw (jc, kc) from its prior. Second, if nc = 1, then follow this scheme:
Draw kc from its prior and then draw jc according to

jc − 1 ∼ Binomial
(
kc − 1, Q(xi)

)
, (3.5)

where xi denotes the sole occupant of cluster c. The justification for this scheme is as follows:

p(jc, kc|xi) =
f(xi|jc, kc) p(jc|kc) p(kc)

p(xi)
= p(jc|kc, xi) p(kc), (3.6)

where p(xi) = q(xi) and

p(jc|kc, xi) =
Beta

(
Q(xi)|jc, kc − jc + 1

)
kc

= Binomial
(
jc − 1|kc − 1, Q(xi)

)
. (3.7)

Third, if nc ≥ 2, then adopt a Metropolis–Hastings scheme. Consider the following pro-
posal conditional on θc = (jc, kc):

k′c − 1 ∼ Poisson(kc) (3.8)

j′c − 1 ∼ Binomial
(
k′c − 1, x̂c

)
, (3.9)

where x̂c is the sample mean of the transformed observations x̂i = Q(xi) for xi ∈ xc. Let

q(θ′c|θc, x̂) = Poisson(k′c − 1|kc)Binomial(j′c − 1|k′c − 1, x̂). (3.10)

Then

θ(r+1)
c =

{
θ′c M(r)

c ≥ u(r+1)

θ
(r)
c otherwise

, (3.11)

where u(r+1) ∼ Uniform(0, 1) and

M(r)
c =

p(θ′c|xc)
p(θ

(r)
c |xc)

×
q
(
θ
(r)
c |θ′c, x̂c

(r))
q
(
θ′c|θ

(r)
c , x̂c

(r)) . (3.12)

Neal’s Algorithm 2. Algorithm 2 in Neal (2000) may be used even though the prior is not
conjugate. This is possible because (i) the prior predictive distribution is known (indeed, it
is part of the specification of the model) and (ii) it is possible (as just shown) to draw θc|xi
to populate a newly-created cluster.
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Transformation to the unit interval. Note that x 7→ Q(x) defines a mapping from the
support of the prior predictive distribution to the unit interval. It is convenient to carry out
the computation in terms of the transformed observations

x̂i = Q(xi). (3.13)

The kernel for the transformed observations is

f̂(x̂i|θc) = Beta(x̂i|jc, kc − jc + 1). (3.14)

The rest of the model is unchanged. Given draws {(ψ(r), z
(r)
1:n, α

(r))}Rr=1 conditioned on x̂1:n,
we may compute the predictive distribution for xn+1 directly from (3.15) or (3.18) below.

Posterior predictive distribution. Given draws {ψ(r)}Rr=1 from p(ψ|x1:n), the posterior
predictive distribution can be approximated via

p(xn+1|x1:n) ≈ 1

R

R∑
r=1

p(xn+1|ψ(r)) =
1

R

R∑
r=1

m∑
c=1

w(r)
c f(xn+1|θ(r)c ). (3.15)

A smoother approximation. It is possible to obtain a lower-variance approximation to the
generic distribution by integrating out the mixture weights and the cluster coefficients for
the unoccupied clusters. The indices for the occupied clusters are given by C = {c : c ∈ z1:n}.
Integrating out w given the classifications produces

E[wc|z1:n, α] =
nc

n+ α
for c ∈ C (3.16a)

E

[∑
c 6∈C

wc
∣∣ z1:n, α] =

α

n+ α
. (3.16b)

In addition, for each c 6∈ C we can use p(θc) to integrate out θc, thereby replacing f(xn+1|θc)
with q(xn+1). Consequently, the generic distribution can be expressed conditionally as9

p(xn+1|z1:n, {θc}c∈C , α) =
∑
c∈C

nc
n+ α

f(xn+1|θc) +
α

n+ α
q(xn+1). (3.17)

The approximation is given by

p(xn+1|x1:n) ≈ 1

R

R∑
r=1

p(xn+1|z(r)1:n, {θ
(r)
c }c∈C(r) , α

(r))

=
1

R

R∑
r=1

( ∑
c∈C(r)

n
(r)
c

n+ α(r)
f(xn+1|θ(r)c )

)
+ q(xn+1)

1

R

R∑
r=1

α(r)

n+ α(r)
.

(3.18)

4. Indirect density estimation for latent variables

Up to this point I have assumed that x1:n was observed and the goal of inference was the
posterior predictive distribution p(xn+1|x1:n). In this section, I now suppose x1:n is latent
and instead Y1:n = (Y1, . . . , Yn) is observed, where Yi may be a vector of observations. To
accommodate this situation, let

p(Yi|xi) (4.1)

9This representation is associated with the Chinese Restaurant Process. It plays a central role in some
samplers such as Algorithm 2 in Neal (2000).
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denote the sampling distribution for Yi given the latent variable xi. The form of the density
p(Yi|xi) will depend on the specific application. Nuisance parameters may have been inte-
grated out to obtain p(Yi|xi).10 Conditional on the observation Yi, one may interpret the
likelihood p(Yi|xi) as a noisy signal for xi. Assume the joint likelihood is given by

p(Y1:n|x1:n) =
n∏
i=1

p(Yi|xi). (4.2)

In this setting, the object of interest is

p(xn+1|Y1:n) =

∫
p(xn+1|x1:n) p(x1:n|Y1:n) dx1:n

=

∫
p(xn+1|ψ) p(ψ|Y1:n) dψ.

(4.3)

The right-hand side of the first line in (4.3) expresses the distribution in terms of latent
variable density estimation: p(xn+1|x1:n) is what we would calculate if x1:n were observd and
p(x1:n|Y1:n) is what is known about x1:n given what is actually observed. The second line
in (4.3) expresses the distribution directly in terms of the DPM.

I will refer to p(xn+1|Y1:n) as the generic distribution, because it applies to any “x” for
which there is as yet not direct signal (i.e., no observation “Y ”). Note that xn+1 does not ap-
pear in the likelihood (4.2) and is therefore not identified. The identified latent variables will
have specific distributions that incorporate their specific signals: p(xi|Y1:n) for i = 1, . . . , n.

The sampler works as before with the additional step of drawing x1:n for each sweep of the
sampler.11 Let θi denote θzi . Since the joint likelihood factors [see (4.2)], the full conditional
posterior for xi reduces to the posterior for xi in isolation (conditional on θi):

p(xi|Y1:n, x−i1:n, ψ, z1:n) = p(xi|Yi, θi), (4.4)

where

p(xi|Yi, θi) =
p(Yi|xi) f(xi|θi)∫
p(Yi|xi) f(xi|θi) dθi

. (4.5)

Again it is convenient to transform x1:n to the unit interval via x̂i = Q(xi) and use the
transformed kernel (3.14). Then

p(x̂i|Yi, θi) ∝ p(Yi|x̂i) f̂(x̂i|θi), (4.6)

where
p(Yi|x̂i) = p(Yi|xi)|xi=Q−1(x̂i). (4.7)

The posterior distributions of the specific cases can be approximated with histograms of

the draws {x(r)i }Rr=1 from the posterior. However, one can adopt a Rao–Blackwellization
approach (as was done with the generic case) and obtain a lower variance approximation. In
particular,

p(xi|Y1:n) =

∫
p(xi|Yi, θi) p(θi|Y1:n) dθi

≈ 1

R

R∑
r=1

p(xi|Yi, θ(r)i ).

(4.8)

10This assumption is solely for expositional simplicity. Any nuisance parameters may be retained and
sampled.

11In some cases it is possible to integrate x1:n out analytically. See Section 5 and Appendix E for examples.
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Note θ
(r)
i is short-hand notation for θ

(r)
c where c = z

(r)
i .

Referring to (4.3), the generic distribution can be approximated by

p(xn+1|Y1:n) ≈ 1

R

R∑
r=1

p(xn+1|ψ(r)), (4.9)

where {ψ(r)}Rr=1 are draws from p(ψ|Y1:n). Referring to (3.17), the generic distribution can
also be expressed as

p(xn+1|Y1:n) ≈ 1

R

R∑
r=1

p(xn+1|z(r)1:n, θ
(r), α(r)), (4.10)

where the draws {(z(r)1:n, θ
(r), α(r))}Rr=1 are from the posterior given Y1:n.

Sharing, shrinkage, and pooling. The ways in which α and kc affect the variation of
p(xi|ψ) around the prior predictive distribution q(xi) were discussed in Section 2. In that
section, it was assumed that x1:n is observed. At this point it is convenient to make explicit
the effect of the concentration parameter on the notion of sharing (which could have been
done in Section 2). In particular, the concentration parameter α has an effect on the extent
to which observations share mixture components (also known as clusters). When α is small,
w is dominated by a few large values and consequently the amount of “sharing” is large.
In the limit as α → 0, there is only one cluster, which amounts to complete sharing. By
contrast, as α → ∞, the individual weights wc → 0 and each observation occupies its own
cluster and there is no sharing.

In the current section, by contrast, it is assumed that x1:n is latent. Consequently, the
prior will have an effect on the posterior distribution of x1:n. In this setting, it makes sense
to talk additionally about shrinkage and pooling.

One may interpret the model in terms of partial sharing of the parameters. Whenever a
parameter θc is shared among cases, the associated coefficients (xi ∈ xc) are shrunk toward a
common value. Complete sharing, therefore, implies global shrinkage, while partial sharing
implies local shrinkage which allows for multiple modes to exist simultaneously.

Gelman et al. (2014) and Gelman and Hill (2007), discuss three types of pooling : no
pooling, complete pooling, and partial pooling. The no-pooling model corresponds to the
no-sharing prior and the partial-pooling model corresponds to the one-component complete
sharing prior (global shrinkage). The complete-pooling model is a special case of the one-
component complete sharing prior with the added restriction that all of the xi are the same
(complete local shrinkage).

See Table 1 on page 12 for the complete set of relationships. Table 1 refers to the Dirichlet
Process (DP) model which is described in Section 5.

5. Dirichlet Process (DP) model as special case

In this section we examine the effect of large values of kc. A prior that puts most of its
weight on large values of kc will enhance the variation. In order to examine the limiting case,
it is convenient to change variables from (jc, kc) to (φc, kc) where φc = Q−1(jc/kc). Note
that jc/kc converges in distribution to Uniform(0, 1) as kc → ∞. Therefore, φc converges in
distribution to Q. The kernel can be expressed in terms of this parameterization:

f̃(xi|φc, kc) = f(xi|jc = Q(φc) kc, kc) = Beta(Q(xi)|Q(φc) kc, kc −Q(φc) kc + 1) q(xi). (5.1)
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Table 1. Sharing, shrinkage, and pooling. Sharing is controlled by the
concentration parameter α. Complete sharing produces global shrinkage (to
a single cluster). Local shrinkage is controlled by kc, which determines the
precision of the kernel. Complete local shrinkage identifies the cases in a
given cluster (i.e., all cases in a given cluster have the same value). There
is no pooling if either α = ∞ or kc = 1. The Dirichlet Process (DP) and
Dirichlet Process Mixture (DPM) are nonparametric priors.

Local Shrinkage
(controlled by kc)

Sharing (controlled by α)

complete (α = 0) partial none (α =∞)

complete (kc =∞) complete pooling DP no pooling
partial partial pooling DPM no pooling
none (kc = 1) no pooling no pooling no pooling

The kernel collapses to a point mass located at φc as kc gets large:

lim
kc→∞

f̃(xi|φc, kc) = δ(xi − φc), (5.2)

where δ( · ) denotes the Dirac delta function. Thus, in the limit the DPM model becomes the
Dirichlet Process (DP) model where θc = φc with base distribution Q. We can express this
limiting case as

p(xi|ψ) =

∞∑
c=1

wc δ(xi − φc). (5.3)

Indirect density estimation. Here we apply the DP to the case of indirect density esti-
mation. (Some authors refer to this as a “DPM model.”)

It is convenient to integrate out xi:

p(Yi|ψ) =

∫
p(Yi|xi) p(xi|ψ) dxi =

∞∑
c=1

wc p(Yi|φc), (5.4)

where

p(Yi|φc) =

∫
p(Yi|xi) δ(xi − φc) dxi = p(Yi|xi)|xi=φc . (5.5)

In (5.4), p(Yi|φc) plays the role of the kernel; however, the form of p(Yi|φc) depends on p(Yi|xi)
which in turn depends on the observations (and possibly on other aspects of the likelihood).

Recal w ∼ Stick(α) and φc
iid∼ Q. We can classify observations according to zc ∝ wc p(Yi|φc).

Draws of w and α are unchanged. Regarding draws of φc, note that

p(φc|Y1:n, z1:n) ∝ q(φc)
∏
i∈Ic

p(Yi|φc). (5.6)

If q(φc) is a conjugate prior, then there is a closed-form expression for p(φc|Y1:n, z1:n).

The specific distributions can be approximated via {x(r)i }Rr=1 where x
(r)
i = φ

(r)

z
(r)
i

and the

generic distribution can be approximated via {x(r)n+1}Rr=1 where

x
(r)
n+1 ∼

m∑
c=1

w(r)
c δ

φ
(r)
c
. (5.7)
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Smoother approximations may be obtained as follows. For the specific case, since xi = φzi ,
we have p(xi|Y1:n, z1:n) = p(φzi = xi|Y1:n, z1:n), so that

p(xi|Y1:n) ≈ 1

R

R∑
r=1

p
(
φ
z
(r)
i

= xi |Y1:n, z(r)1:n

)
. (5.8)

A smoother approximation for the generic distribution can be based on

p(xn+1|Y1:n, z1:n, w) =

∫
p(xn+1|w, φ) p(φ|Y1:n, z1:n) dφ

=

m∑
c=1

∫
wc δ(xn+1 − φc) p(φc|Y1:n, z1:n) dφc

=
m∑
c=1

wc p(φc = xn+1|Y1:n, z1:n).

(5.9)

Therefore,

p(xn+1|Y1:n) ≈ 1

R

R∑
r=1

m∑
c=1

w(r)
c p(φc = xn+1|Y1:n, z(r)1:n). (5.10)

Model comparison. The likelihood of the model using the DP prior may be compared with
the likelihood of the model using the more general DPM prior. Let M denote the model.
Then

p(Y1:n|M) = p(Y1|M)

n∏
i=2

p(Yi|Y1:i−1,M), (5.11)

where

p(Yi|Y1:i−1,M) =

∫
p(Yi|xi) p(xi|Y1:i−1,M) dxi. (5.12)

In general these integrals can be computed via numerical quadrature.

Binomial data. We now illustrate the use of the DP prior for indirect density estimation
in conjunction with the Binomial likelihood.12

Let

p(Yi|xi) = Binomial(si|Ti, xi), (5.13)

where Ti is the number of trials, si is the number of successes, and xi is the probability of
success. Referring to (5.5),

p(Yi|φc) = Binomial(si|Ti, φc). (5.14)

We can classify observations according to zi ∝ wc Binomial(si|Ti, φc) and utilize the sampler
described in Section 3 for w and α.

We now turn to φc. If we assume

q(φc) = Beta(φc|a0, b0), (5.15)

12See Greenberg (2013) and Geweke et al. (2011) for textbook treatments of the DP with a binomial
likelihood. These treatments differ in two ways from what is presented here. First they use a marginalized
version of the model for sampling based on the Chinese Restaurant Process (CRP), along the lines of Algorithm
2 in Neal (2000). Second, this paper provides smoother posterior distributions for both specific and generic
cases.
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then
p(φc|Y1:n, z1:n) = Beta(φc|Ac, Bc), (5.16)

where
Ac := a0 +

∑
`∈Ic

s` and Bc := b0 +
∑
`∈Ic

T` − s`. (5.17)

We can sample φc from (5.16).

Specific and generic distributions. Since xi = φzi [and referring to (5.16)], we have

p(xi|Y1:n, z1:n) = p(φzi = xi|Y1:n, z1:n) = Beta(xi|Azi , Bzi), (5.18)

where Azi and Bzi are given in (5.17) with c = zi. Therefore,

p(xi|Y1:n) ≈ 1

R

n∑
r=1

p(xi|Y1:n, z(r)1:n) =
1

R

R∑
r=1

Beta(xi|A(r)
zi , B

(r)
zi ). (5.19)

Turning to the generic case, we have

p(xn+1|Y1:n) ≈ 1

R

R∑
r=1

m∑
c=1

w(r)
c Beta(xn+1|A(r)

c , B(r)
c ). (5.20)

In the spirit of (3.17), a smoother approximation is

p(xn+1|Y1:n) ≈ 1

R

R∑
r=1

∑
c∈C(r)

n
(r)
c

n+ α(r)
Beta(xn+1|A(r)

c , B(r)
c ) +

α(r)

n+ α(r)
Beta(xn+1|a0, b0).

(5.21)
(This is a weighted average of the specific distributions mixed with the prior predictive
distribution.)

6. Investigation: Part I

In this section I apply the model to a number of applications and investigate the perfor-
mance: the Nassau County school enrollment data, the galaxy data, the Buffalo snowfall
data, and the Old Faithful data (in two dimensions).

The prior. Recall the prior has three components: the prior predictive distribution q(xi), the
prior for kc, the prior for α.

The prior predictive distributions are all flat. (It may be useful to redo the estimation
with other prior predictive distributions.)

Regarding the prior for kc, unless otherwise noted, ξ = 1/200. With this setting, the prior
mean for kc equals 200 and the prior standard deviation equals

√
200× 199 ≈ 199.5. The

90% highest prior density (i.e., probability mass) region runs from kc = 1 to kc = 460.
As noted above, the prior for α is given by p(α) = 1/(1 +α)2 so that the prior median for

α equals one.

Nassau County school enrollment data. These data have been used by Simonoff (1996)
as a test bed for density estimation on the unit interval (illustrating boundary bias problems)
and recently used by Geenens (2014) and Wen and Wu (2014). The data are the proportion
of white student enrollment in 56 school districts in Nassau County (Long Island, New York),
for the 1992–1993 school year. A total of 50,500 draws were made, with the first 500 discarded
and 1,000 draws retained (every 50th) from the remaining 50,000. The predictive distribution
is shown in Figure 3.
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Galaxy data. Figure 4 shows the quasi-Bernstein predictive density for the galaxy data
with support over the interval [5, 40]. A total of 50,500 draws were made, with the first 500
discarded and 1,000 draws retained (every 50th) from the remaining 50,000.

Buffalo snowfall data. Figure 5 shows the quasi-Bernstein predictive density for the galaxy
data with support over the interval [0, 150]. A total of 50,500 draws were made, with the
first 500 discarded and 1,000 draws retained (every 50th) from the remaining 50,000.

The density in Figure 5 is substantially smoother than what is produced by many alter-
native models which typically display three modes. In the current model, fixing α = 5 will
produce three modes, but this value for α is deemed unlikely according the model when we
learn about α. The posterior median for α is about 0.31. The posterior probability of α ≥ 5 is
about 20 times lower than the prior probability. (Increasing α also has the effect of increasing
the probability of new cluster, which in turn has the effect of increasing the predictive density
at the boundaries of the region. For example, the predictive density increase by roughly a
factor of 10 at xn+1 = 150.)

With this data set there is a strong (posterior) relation between α and kc. The posterior
median of kc equals about 10 given α < 1, but it equals about 140 given α ≥ 1.

Old Faithfull data. Here we examine the Old Faithful data, which comprises 272 observa-
tions of pairs composed of eruption time (the duration of the current eruption in minutes) and
waiting time (the amount of time until the subsequent eruption in minutes). Figure 6 shows a
scatter plot of the data, a contour plot of the joint predictive distribution, and two line plots
of conditional expectations computed from the joint distribution. The distribution was given
positive support over the region [1, 5.75] × [35, 105]. The distribution is distinctly bimodal.
Figure 7 shows the marginal predictive distributions computed from the joint distribution
(along with rug plots of the data).

7. Investigation: Part II

In this section I apply the model of indirect density estimation to a number of applications,
including rat tumor data, some baseball data, and the thumbtack data.

Rat tumor data. The rat tumor data is composed of the results from 71 studies. The
number of rats per study varied from ten to 52. The rat tumor data are described in Table 5.1
in Gelman et al. (2014) and repeated for convenience in Table 2 (although the data are
displayed in a different order). The data are plotted in Figure 9. This plot brings out certain
features of the data that are not evident in the table. There are 59 studies for which the
total number of rats is less than or equal to 35 and more than half of these studies (32) have
observed tumor rates less than or equal to 10%. By contrast, none of the other 12 studies
has an observed tumor rate less than or equal to 10%.

The posterior distribution for the generic case is shown in Figure 10. The posterior dis-
tributions for the specific cases are shown in Figure 11. This latter figure can be compared
with Figure 5.4 in Gelman et al. (2014) to show the differences in the results obtained by the
more general approach presented here.

Baseball batting skill. This example is inspired by the example in Efron (2010) which in
turn draws on Efron and Morris (1975). We are interested in the ability of baseball players
to generate hits. We do not observe this ability directly; rather we observe the outcomes
(successes and failures) of a number of trials for a number of players. In this example Ti is
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the number of “at-bats” and si is the number of “hits” for player i. See Figure 8 for the data.
[The analysis in not complete.]

Thumbtack data. The thumbtack data are shown in Table 3. The posterior distribution
for the generic success rate is displayed in Figure 12.

The posterior distribution for the generic success rate given the alternative model is shown
in Figure 14.

Appendix A. Comparison with Petrone’s model

Petrone’s model can be expressed as follows:

p(xi|πk, k) =
k∑
j=1

πjk Beta(xi|j, k − j + 1), (A.1)

where πk = (π1k, . . . , πkk) is the vector of mixture weights such that πjk ≥ 0 and
∑k

j=1 πjk =
1. In Petrone’s model, the prior is given by

πk|k ∼ Dirichlet(απk) (A.2a)

k ∼ Pk, (A.2b)

where απk = (απ1k, . . . , α πkk) and where πk ∈ ∆k−1.
Compare (A.1)–(A.2) with (2.5) and (2.10)–(2.11), letting Q(x) = x. Petrone’s model is

an average of finite-order mixtures, while the model in this paper is an infinite-order mixture
model. Any finite mixture in my model can be represented exactly in Petrone’s model.

However, my model is a more parsimonious version of Petrone’s, in that it can represent
the same functional forms with fewer parameters. I suggest my model is more efficient.

In any event, the two models can be compared in terms of their marginal likelihoods. The
marginal likelihoods can be computed from the sequence of predictive distributions:

p(x1:n|Am) = p(x1)
n∏
i=2

p(xi|x1:i−1, Am), (A.3)

where Am stands for the assumptions of model m. Let m = 1 indicate Petrone’s model and
let m = 2 indicate my model.

Reformulation. Petrone reformulates the collection of Dirichlet distributions indexed by k
in terms of a single underlying Dirichlet process (DP). This reformulation facilitates sampling
by removing the effect of k on the “dimension” of the parameter, thereby obviating the need
for inference methods such as reversible jump MCMC [see Green (1995)].

Let G ∼ DP(α,H) where the support of the base distribution H is B = (0, 1]. G has the

following representation: G =
∑∞

c=1 ωc δξc , where ω ∼ Stick(α), ξc
iid∼ H, and δx is a point

mass located at x.
Let Bk = {Bjk}kj=1 denote a partition of B where

Bjk =

(
j − 1

k
,
j

k

]
. (A.4)

Then, by the central property of DPs,(
G(B1k), . . . , G(Bkk)

)
∼ Dirichlet

(
αH(B1k), . . . , αH(Bkk)

)
, (A.5)
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where H(Bjk) =
∫ 1
0 1(ξ ∈ Bjk) dH(ξ) and

G(Bjk) =
∞∑
c=1

1
(
ξc ∈ Bjk

)
ωc. (A.6)

Letting πjk = G(Bjk) and subject to the substantive restriction πjk = H(Bjk), we ob-
tain (A.2a). As an example, let H be the uniform distribution. Then H(Bjk) = 1/k.

The classification of observation i is facilitated via a latent variable ζi ∼ H. Define
J(ζ, k) = dζ ke, where dxe is the “ceiling” of x (i.e., the smallest integer greater than or equal
to x). Let zki = J(ζi, k) ∈ {1, . . . , k}. Also let sk = (s1k, . . . , skk), where

sjk =

n∑
i=1

1
(
J(ζi, k) = j

)
. (A.7)

Note
∑k

j=1 sjk = n.

Given this setup (and assuming the base distribution H is uniform), a Gibbs sampler can
be based on the following full conditional distributions:

p(zki = j|k, πjk, xi) ∝ πjk Beta(xi|j, k − j + 1) (A.8a)

p(ζi|zki = j, k) = Uniform
(
ζi|(j − 1)/k, j/k

)
(A.8b)

p(k|ζ1:n) ∝ p(k)
n∏
i=1

Beta(xi|J(ζi, k), k − J(ζi, k) + 1) (A.8c)

p(πk|k, ζ1:n) = Dirichlet(sk + α/k). (A.8d)

Given R draws from the posterior distribution, the predictive distribution can be approx-
imated by [see (A.1)]

p(xn+1|x1:n) ≈ 1

R

R∑
r=1

p(xn+1|(πk)(r), k(r)) (A.9)

For one-dimensional Old Faithful data, Petrone sets K = 230. If this were applied to the
two-dimensional data, the number of components would be K1×K2 = 2302 = 52, 900, which
makes this model effectively infeasible.

Sampling α. This is all conditional on α. Consequently, we can provide α with a prior and
and sample it as well. The conditional posterior for α is

p(α|k, sk) ∝ p(α) Γ(n+ α)

k∏
j=1

π
sjk+α/k−1
jk

Γ(sjk + α/k)
. (A.10)

However, there are issues with evaluating the likelihood given the small magnitude of some
of the elements of πk.

Appendix B. Comparison with Canale and Dunson

Canale and Dunson (2016) present a model with close similarities to the model in this
paper. The model in this paper is

p(xi|−) =

∞∑
c=1

wc Beta(xi|jc, kc − jc + 1) (B.1a)
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where

wc = vc

c−1∏
`=1

(1− v`) (B.1b)

vc
iid∼ Beta(1, α) (B.1c)

kc − 1
iid∼ Geometric(ξ) (B.1d)

jc|kc ∼ Uniform({1, . . . , kc}). (B.1e)

(The distributions for w and kc may be easily changed if the situation calls for it.)
By contrast, the model of Canale and Dunson (2016) is

p(xi|−) =

∞∑
s=0

2s∑
h=1

πs,h Beta(xi|h, 2s − h+ 1), (B.2a)

where

πs,h = Ss,h
∏
r<s

(1− Sr,gshr)Tshr (B.2b)

Ss,h ∼ Beta(1, a) (B.2c)

Rs,h ∼ Beta(b, b) (B.2d)

and

where gshr = dh/2s−re is the node traveled through at scale r on the way to
node h at scale s, Tshr = Rr,gshr is (r+1, gshr+1) is the right daughter of node
(r, gshr), and Tshr = 1−Rr,gshr if (r+1, gshr+1) is the left daughter of (r, gshr).

The marginal prior distribution for node (s, h) is given by

s ∼ Geometric
(
1/(1 + a)

)
(B.3)

h|s ∼ Uniform({1, . . . , 2s}). (B.4)

There are two ways in which the models differ. First, Canale and Dunson (2016) restrict
the set of {k} to powers of two (k = 2s). Second, the way in which clustering is modeled is
different. In Canale and Dunson (2016) clustering is affected by the choice of b. However,
the effect of b is dominated by the effect of a. As the authors say

Hyperpriors can be chosen for a and b to allow the data to inform about these
tuning parameters; we find that choosing the hyperprior for a is particularly
important, with b = 1 as a default.

Appendix C. A different object of interest

In order to help clarify the nature of the predictive distribuition (2.3), it may be useful
to contrast it with a different object of interest. In particular, one could be interested in
estimating the unknown (density) function g(x) = p(x|ψ).

A frequentist estimate might be ĝ(x) = p(x|ψ̂), where ψ̂ is an estimate of ψ such as the
maximum likelihood estimate:

ψ̂ = argmax
ψ

p(x1:n|ψ). (C.1)
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Uncertainty regarding the estimate ĝ(x) could be characterized by the sampling variation in

x1:n. For example, variation in x1:n would induce variation in ψ̂ and consequently in ĝ(x) as
follows:

x
(r)
1:n ∼ p(x1:n|ψ) and x

(r)
1:n → ψ̂(r) → p(x|ψ̂(r)), (C.2)

where x
(r)
1:n denotes a draw from the sampling distribution (possibly approximated using a

bootstrap approach) and ψ̂(r) denotes the corresponding estimate computed from that draw.
From the Bayesian perspective, variation in p(x|ψ) flows from variation in ψ according to

the posterior distribution for ψ:

ψ(r) ∼ p(ψ|x1:n) and ψ(r) → p(x|ψ(r)), (C.3)

where ψ(r) denotes a draw from the posterior distribution (possibly approximated using an
MCMC approach). A Bayesian estimate of the function g(x) might compute the average of
p(x|ψ) with respect to the posterior distribution for ψ:

g̃(x) =

∫
p(x|ψ) p(ψ|x1:n) dψ. (C.4)

Although the Bayesian estimate g̃(x) has the same representation as the predictive distri-
bution p(xn+1|x1:n) [see (2.3)], the two objects are fundamentally different. The predictive
distribution is not an estimate of g(x); rather, it is a summary of what is known about xn+1

based on the observations x1:n — it is the distribution that would be used to make a deci-
sion that depends on xn+1. Variation in ψ due to its posterior distribution plays a role in
constructing the predictive distribution, but such variation is not relevant once ψ has been
integrated out.

Nevertheless, there are two sorts of variation that are of interest regarding the predictive
distribution. The first sort of variation involves the sensitivity of p(xn+1|x1:n) to the prior
distribution p(ψ). The second sort of variation relates to the possibility of delaying the
decision until more observations are acquired: Perhaps additional observations can change
the predictive distribution in a way that increases the expected utility of the decision by more
that the associated cost from delay and acquisition.

For example, the utility of a decision that depends on xn+2 may depend on xn+1 through

p(xn+2|x1:n, xn+1) =

∫
p(xn+2|ψ) p(ψ|x1:n, xn+1) dψ, (C.5)

in which case p(xn+2|x1:n+1) will be used to compute the optimal decision. However, if xn+1

provides very little additional information about ψ, then p(ψ|x1:n, xn+1) ≈ p(ψ|x1:n) and

p(xn+2|x1:n, xn+1) ≈ p(xn+2|x1:n). (C.6)

Consequently, the decision will be essentially independent of xn+1 and there will be little
benefit from the additional observation.

Appendix D. Local dependence via copula

In this section I generalize the two-dimensional density model (presented in Section 2) to
include local dependence, which is introduced via a copula. The Farlie–Gumbel–Morgenstern
(FGM) copula is easy to work with because a flat prior for its copula parameter produces
a flat prior predictive density over the unit square. However, the potential dependence is
somewhat limited.
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The FGM copula density is given by13

c(u1, u2|τ) := 1 + τ (2u1 − 1) (2u2 − 1) where −1 ≤ τ ≤ 1 (D.1)

for (u1, u2) ∈ [0, 1]2. The marginal densities are flat: p(u`|τ) = 1[0,1](u`) for ` = 1, 2. The
correlation between u1 and u2 is τ/3. Setting τ = 0 delivers independence: c(u1, u2|τ = 0) =
1. In addition, if

p(τ) = Uniform(τ | − 1, 1) =
1

2
1[−1,1](τ), (D.2)

then the expectation with respect to τ produces independence as well:

p(u1, u2) =

∫ 1

−1
c(u1, u2|τ) p(τ) dτ = 1. (D.3)

Prior predictive distribution. Let

f`(xi`|jc`, kc`) = Beta
(
Q`(xi`)|jc`, kc` − jc` + 1

)
q`(xi`) (D.4)

and let F`(xi`|jc`, kc`) denote the associated CDF. Then let the joint kernel be given by

f(xi|θc) = c
(
F1(xi1|jc1, kc1), F2(xi2|jc2, kc2) | τc

) 2∏
`=1

f`(xi`|jc`, kc`), (D.5)

where θc = (jc1, jc2, kc1, kc2, τc). Let the prior for θc be given by

p(θc) =
p(kc1) p(kc2) p(τc)

kc1 kc2
, (D.6)

where the prior for τc is given in (D.2). Then for any p(kc1) and p(kc1) we have

p(xi) =

2∏
`=1

q`(xi`). (D.7)

Algorithm 2 in Neal (2000). Algorithm 2 in Neal (2000) may used because (i) the prior
predictive is known [see (D.7)] and (ii) it is possible to draw θc|xi. Regarding (ii), note

p(θc|xi) =
f(xi|θc) p(θc)

p(xi)
= p(kc|xi) p(jc|xi, kc) p(τc|xi, jc, kc), (D.8)

where

p(kc|xi) =
2∏
`=1

p(kc`) (D.9)

p(jc|xi, kc) =

2∏
`=1

f`(xi`|jc`, kc`)
q`(xi`) kc`

=

2∏
`=1

Binomial
(
jc` − 1|kc` − 1, Q`(xi`)

)
(D.10)

p(τc|xi, jc, kc) =
1

2
c
(
F1(xi1|jc1, kc1), F2(xi2|jc2, kc2) | τc

)
. (D.11)

13It is interesting to note that the FGM copula can be expressed in terms of a mixture of order-statistic-
based copulas described on page 5. In particular, let

ĉ(u1, u2|w) = w c̃(u1, u2|2) + (1− w) c̃(1− u1, u2|2) = 1 + (2w − 1) (1− 2u1) (1− 2u2).

Thus ĉ(u1, u2|w = (τ + 1)/2) = c(u1, u2|τ).
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Thus, we can make a draw from the joint posterior by first drawing kc from its prior distri-
bution, then drawing jc from its distribution conditional on kc, and finally drawing τc from
its conditional distribution.

Appendix E. Binomial likelihood

A special case of some interest is when the data are binomial in nature and the object of
interest is latent:

p(Yi|xi) = Binomial(si|Ti, xi), (E.1)

where Ti is the number of trials, si is the number of successes, and xi is the latent probability
of success. In this case, the conditional posterior for a specific case is

p(xi|Yi, θzi) = Beta(xi|jzi + si, (kzi − jzi + 1) + Ti − si), (E.2)

which can be used in (4.4) for sampling and in (4.8) for smoothing.

Integrate out the success rates. If the data are observations from binomial experiments
and the prior predictive is the uniform distribution, then the prior is a mixture of beta
distributions and it is possible to integrate out the unobserved success rates.

For this purpose, assume q(xi) = Uniform(0, 1). Then there is a closed-form expression for
the likelihood of θc = (jc, kc) in terms of the observations:

p(si|Ti, θc) = p(si|Ti, jc, kc) =

∫ 1

0
Binomial(si|Ti, xi)Beta(xi|jc, kc − jc + 1) dxi

= Beta-Binomial(si|jc, kc − jc + 1, Ti)

=

(
Ti
si

)
kc! (si + jc − 1)! (Ti + kc − si − jc)!

(jc − 1)! (kc − jc)! (Ti + kc)!
.

(E.3)

Note that

p(si|Ti, kc) =

kc∑
jc=1

p(si|Ti, jc, kc)
kc

=
1

Ti + 1
, (E.4)

which is independent of kc. Therefore, p(si|Ti) = 1/(Ti + 1), the uniform distribution over
si ∈ {0, . . . , Ti}.

We can again use Algorithm 2 from Neal (2000) to make draws from the posterior distri-
bution since the prior predictive distribution is known and when nc = 1

p(jc, kc|Ti, si) =
p(si|Ti, jc, kc) p(jc, kc)

p(si|Ti)

=

{
(Ti + 1)Beta-Binomial(si|jc, kc − jc + 1, Ti)

kc

}
p(kc)

= Beta-Binomial(jc − 1|si + 1, Ti − si + 1, kc − 1) p(kc).

(E.5)

Thus kc ∼ p(kc) and

jc − 1 ∼ Beta-Binomial(si + 1, Ti − si + 1, kc − 1). (E.6)

This case when nc = 1 suggests the a proposal for a Metropolis–Hastings scheme when
nc ≥ 2:

k′c − 1 ∼ Poisson(kc) (E.7)

j′c − 1 ∼ Beta-Binomial(sc + 1, T c − sc + 1, k′c − 1), (E.8)
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where sc and T c are sample means computed from the observations in cluster c.
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Figure 3. School data: Posterior predictive distribution.
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Figure 4. Galaxy data: quasi-Bernstein predictive density with support over
the interval [5, 40] and a rug plot of the data.
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Figure 5. Buffalo snowfall data: quasi-Bernstein predictive density with sup-
port over the interval [0, 150] and a rug plot of the data.
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Figure 6. Old Faithful data: Contours for posterior predictive density with
support over [1, 5.75]× [35, 105]. Lowest contour is at the level of the uniform
prior (≈ 0.003). Contour spacing above the lowest contour is ≈ 0.006. Data
are shown as dots and conditional expectations are shown as thicker lines.
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Figure 7. Old Faithful data: Marginal distributions for eruption time and
waiting time computed from joint distribution.

Table 2. Rat tumor data: 71 studies (rats with tumors/total number of rats).

00/17 00/18 00/18 00/19 00/19 00/19 00/19 00/20 00/20
00/20 00/20 00/20 00/20 00/20 01/20 01/20 01/20 01/20
01/19 01/19 01/18 01/18 02/25 02/24 02/23 01/10 02/20
02/20 02/20 02/20 02/20 02/20 05/49 02/19 05/46 03/27
02/17 07/49 07/47 03/20 03/20 02/13 09/48 04/20 04/20
04/20 04/20 04/20 04/20 04/20 10/50 10/48 04/19 04/19
04/19 05/22 11/46 12/49 05/20 05/20 06/23 05/19 06/22
04/14 06/20 06/20 06/20 16/52 15/47 15/46 09/24

7 8 9 10 11 12 13 14 15 16 17 18

Hits

Figure 8. Baseball data: 18 players with 45 at-bats each.

Table 3. The thumbtack data set: 320 instances of binomial experiments
with 9 trials each. The results are summarized in terms of the number of
experiments that have a given number of successes.

No. of successes 0 1 2 3 4 5 6 7 8 9 Total
No. of experiments 0 3 13 18 48 47 67 54 51 19 320
Frequency (percent) 0 1 4 6 15 15 21 17 16 6 ≈ 100
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Figure 9. Rat tumor data: 71 studies. Number of studies (1 to 7) propor-
tional to area of dot. Number of rats with tumors (0 to 16) indicated by
contour lines. There are 59 studies for which the total number of rats is less
than or equal to 35 and more than half of these studies (32) have observed
tumor rates less than or equal to 10%. By contrast, none of the other 12
studies has an observed tumor rate less than or equal to 10%.
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Figure 10. Posterior distribution for generic rat tumor rate.
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Figure 11. Posterior medians and 95% highest posterior density regions of
rat tumor rates. Darker lines indicate multiple observations. Compare with
Figure 5.4 in Gelman et al. (2014).
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Figure 12. Thumbtack data: Posterior distribution for the generic probabil-
ity of success.
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Figure 13. Thumbtack data: Posterior distributions for the specific prob-
abilities of success, computed for each exchangeable group with a common
number of success, 1 through 9.
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Figure 14. Thumbtack data: Posterior distribution for generic success rate
given the alternative model compared with the distribution given the main
model.


