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ABSTRACT. When taxable yields are tied to tax-exempt yields at the short end
of the yield curve, the volatility of the before-tax short-term interest rate will
be greater than the volatility of the after-tax short-term interest rate, and the
relative shapes of the two term structures will be affected by this relationship.
In particular, the yield on a default-free tax-exempt zero-coupon bond will be
greater than the “after-tax yield” on a default-free taxable zero-coupon bond.
Estimates of the size and variability of this effect are provided.

1. INTRODUCTION

We analyze a simple, stylized model of taxable and tax-exempt bonds in an
arbitrage-free setting and derive the relationship between taxable and tax-exempt
yields. The tax rule is this: Any change in the price of a taxable bond be imme-
diately taxable as income at the fixed marginal tax rate. We focus on the yields
on default-free zero-coupon bonds. The naive hypothesis is that the ratio of the
tax-exempt yield the taxable yield equals one minus the tax rate (for all maturi-
ties). In other words, the two yield curves are proportional. We show that the naive
hypothesis implies arbitrage opportunities.

The naive view does contain a germ of truth that can be used to cultivate the
correct relationship. At the very short end of the term structure, the ratio of
the tax-exempt spot rate to the taxable spot rate does equal one minus the tax
rate. This implies that the taxable spot rate is more volatile than the tax-exempt
spot rate, and the relative shapes of the two term structures will be affected by
this relationship. In particular, the yield on a default-free tax-exempt zero-coupon

Date: January 31, 1995. Revised March 14, 1997. Appendix revised September 24, 1997. Additional
minor revisions April 5, 2000.
JEL Classification. G12.
Key words and phrases. Tax-exempt bonds, term structure of interest rates, convexity, Jensen’s
inequality, exponential-affine models.
This paper confirms a conjecture by Joel Lander. In terms of the notation introduced in this
paper, his conjecture can be stated as follows: When #(t) = ¢r(t) where ¢ > 1, then for 7 > ¢
Jensen’s inequality produces §(t,7) < ¢ y(t, 7). I thank Christian Gilles and Joel Lander for useful
discussions. The views expressed herein are the author’s and do not necessarily reflect those of the
Board of Governors of the Federal Reserve System.

1



2 MARK FISHER

bond will be greater than the “after-tax yield” on a default-free taxable zero-coupon
bond.

It is useful to relate this paper to Green (1993). Green makes five assumptions
(p. 327):

1. There are taxable and tax-exempt bonds priced at par available
for each maturity.

2. All bonds are riskless and noncallable.

3. [a] Bonds are priced on the basis of cash flows generated if held
to maturity.

[b] In particular, the options to realize capital losses early are
ignored.

4. Investors trade freely and without frictions in all markets simul-
taneously, and taxation on long and short positions is completely
symmetric so that investors are “marginal” on all bonds.

5. Over the life of each bond the tax rate and the tax regime will
not change.

I adopt these assumptions with the expectation of Assumption 3, each part of
which deserves separate comment. Regarding part [b], the tax-system treated in
this paper does not allow for the deferral of capital gains taxes and consequently,
there are no opportunities for realizing capital losses early. By contrast, Green’s
treatment of the tax code is significantly more realistic. In fact, his analysis is
based on the possibility of constructing a taxable zero-coupon bond for which the
taxes are deferred until maturity.! Regardless of the tax system adopted, part
[a] of Assumption 3 is at odds with standard absence-of-arbitrage conditions that
effectively take into account short term fluctuations in asset prices. These play a
central role in this paper.

In Section 2 we use the Heath, Jarrow, and Morton (1992) restriction on the
dynamics for forward rates to show that two yield curves cannot be proportional
absent arbitrage opportunities. In Section 3 we show that, except for instantaneous
spot rates, the ratio of tax-exempt yields to taxable yields must be greater than that
directly implied by the tax rate. In Section 4 we show how to take an exponential-
affine model of the taxable term structure and derive the tax-exempt term structure.
We provide empirical examples based on three models estimated by Chen and Scott
(1993). In Section 5 we discuss how to incorporate default risk into the tax-exempt
term structure.

2. THE NAIVE HYPOTHESIS

There are two types of zero-coupon bonds: taz-exempt and tazxable. Both types
of bonds pay one unit at maturity with certainty. The taxable bonds are taxable
in the following way: Any change in price is immediately taxable as income at the
fixed marginal tax rate £, where 0 < £ < 1. Let the price at time ¢ of a tax-exempt

LGreen also recognizes that “as the tax code in fact stipulates, that interest deductions from bor-
rowings and short positions cannot exceed investment income from the positions these borrowings
support ... .”
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bond that matures at 7 be P(t, ), and let the price at time ¢ of a taxable bond that
matures at 7 be P(¢,7). The yield-to-maturity and instantaneous forward rates are
given by

~ —log(P(t,7))

y(t, 1) = =)
£t ) = - 2108 E1) loggj(t’ D gty + (- 1) —83’6@7’7)

for tax-exempt bonds, with analogous expressions for taxable bonds.

The naive hypothesis is y(t,7) = ¢y(t,7), where ¢ := 1/(1 — &) > 1. This
hypothesis can also be written in terms of either forward rates, f (t,7) = o f(t, 1),
or bond prices, P(t,7) = P(t,7)?. The most immediate way to see that the naive
hypothesis cannot hold absent arbitrage opportunities is to apply the Heath, Jarrow,
and Morton (1992, HJM) absence-of-arbitrage conditions for forward-rate dynamics.
Following HJM, assume that f(¢,7) can be written as an Ito process under the
standard equivalent martingale measure:

df (t,7) = ps(t,7) dt + op(t,7) " dW (2).

As HJM first showed, the absence of arbitrage implies

pr(t, ) =op(t,7)" [T of(t,u)du. (2.1)

Given the naive hypothesis, f(t,7) = ¢ f(t,7), we have df(t,7) = ¢df(t,7), and
hence we can write

A~

df (t,7) = fup(t, 7)dt + &4(t,7) T dW (1),

where

(2.2)

But there is an analogous HJM restriction for the dynamics of f (t,7) to contend
with:

st 7) &f(t,T)T/ & (t, ) du. (2.3)
t
Substituting (2.2) into (2.3) produces (after cancellation)
pr(t, ) = oyt T)T/ or(t,u)du. (2.4)
t

Obviously (2.4) contradicts (2.1), and therefore, it cannot be the case that g (¢, 7) =
¢ y(t,T) absent arbitrage.
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3. THE CORRECT RELATIONSHIP

Having ruled out 4(t,7) = ¢y(t,7), can we say anything stronger about the
correct relationship between (¢, 7) and y(t,7)? The answer is yes. The line of
reasoning we follow is this: We show that (under the standard equivalent martingale
measure Q) the expected rate of return on the tax-exempt bond is r(t) and the
before-tax expected rate of return on the taxable bond is 7(t) := ¢ r(t). This allows
us to express tax-exempt and taxable bond prices as P(t,7) = Ey[x] and P(t, T) =
Ey[x?], where z is a time-7 measurable random variable. Jensen’s inequality then
implies y(t, 7) < ¢ y(t, 7).

Let the tax-exempt short rate be r(t). (Note that r(t) = y(t,t).) The value of
the tax-exempt money-market account at time ¢ is

B(t) = exp ( /0 ) du> .

Under Q, P(t,7)/8(t) is a martingale. Therefore we can write

d]f((z’:)) = r(t)dt + op(t,7)TdW(t) (3.1)
and
P(t,7) = E [B(t)/B(7)] = E¢[(t, 7)], (3.2)

where ¥ (t,7) = B(t)/8(1) = exp (— [, 7(u) du).

Now let us turn to taxable bonds.? Given the tax rule, the dynamics of the tax
flow are & dp(t, 7). Therefore the after-tax return on a taxable bond is given by
(1—€)dP(t,7)/P(t, 7). Under Q the expected after-tax rate of return must equal the
tax-exempt spot rate: E;[(1—&)dP(t,7)/P(t,7)] = r(t)dt or E;[dP(t,7)/P(t,T)] =
7(t) dt, where 7(t) := ¢ r(t). Therefore we can write

dP(t,7) . R -
Bt =7(t)dt+6p(t, ) dW (). (3.3)

Before proceeding, we can see again that the naive hypothesis violates the absence
of arbitrage: Ito’s lemma applied to P(t,7)? delivers
dP(t,T)?
P(t,7)?
Clearly the drift in (3.4) does not equal the drift in (3.3), and therefore we cannot

have §(t,7) = ¢y(t, ) absent arbitrage.
To find an expression for taxable bonds analogous to (3.2), define

)= e ([ #(s) is) = a0y

= <f(t) +& %Hqﬁap(t, 7')”2) dt + ¢pop(t,7)TdW(t). (3.4)

%In the Appendix we present a more formal derivation of (3.3).
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and note that P(¢,7)/3(t) is a martingale under Q. Therefore the price of a taxable
bond can be written as

P(t,7) = B [B0)/3()| = B [w(t.7)°] . (3.5)

We can examine the relationship between y(¢,7) and y(t,7) by comparing (3.2)

and (3.5). First, assuming the interest rate must remain positive (so that ¢(¢,7) < 1

for 7 > t), we have P(t,7) > P(t,7), and hence §(t,7) > y(t,7).> Second, since x

is convex in « when ¢ > 1, Jensen’s inequality says E[z]? < E[z?]. Thus, for 7 > t
P(t,7)? < P(t, 7).

Taking logs and rearranging produces the central result: For 7 > ¢

y(t,7) < py(t, 7). (3.6)

Thus for 7 > t the absence of arbitrage requires that the ratio of tax-exempt to
taxable yield satisfy

y(t, 1)
y(t,7)

4. MODELING THE TERM STRUCTURE

1-€< <1. (3.7)

Sharper statements about the relationship between ¢(¢,7) and y(t,7) require
an explicit model of the term structure. Consider the exponential-affine class of
models of the term structure of interest rates.* In this class of models, we have
r(t) = do "‘2?:1 0i Xi(t), where the X;(t) are Markovian state variables. The vector
of state variables X (t) has the following dynamics under the standard equivalent
martingale measure:

dX(t) = px (X(1) dt +ox (X (1) dW (1),

where
d
Mx($) = bo—i—Zbi z;, (4.1&)
=1
d
Jx(x)de($) =Gy + ZG’ x5, (4.1b)
=1

where the §; are scalars, the b; are dx 1 vectors and the G; are dxd matrices. Abusing
notation slightly, bond prices as a function of the state variables and maturity
m = T — t are given by

d
P(x,m) = exp (—Bo(m) — ZBi(m) xl> ,

3In a Vasicek (1977) model for example, the interest rate can be negative and one can have P(¢,7) <
P(t, 7).
4See Duffie and Kan (1995) for a general discussion of this class of models. See Fisher and Gilles

(1996) for a discussion of estimating these models.
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where the B;(m) solve®
mmo:@+4ﬂmﬂm—33mnﬁz3mn (4.2)

subject to B;(0) = 0 for i = 0 to d. The initial conditions follow from the require-
ment that P(x,0) = 1.

For taxable bonds, the only change in the structure of the model is due to 7(t) =
¢ r(t): Thus we have #(t) = §y + Z;i:l 6; X;(t), where &; = ¢6;, and the rest of the
model is unchanged. Therefore, we can write

d
15(33, m) = exp (—Bo(m) — Zéz(m) xz> ,
i=1
where the B;(m) solve
Bmm:¢@+3mfm—%mmf@3mn (4.3)

subject to B;(0) = 0 for i = 0 to d.

Empirical section. For empirical purposes, it is convenient to take the taxable
term structure as the primitive and derive the tax-exempt term structure from
it. Thus, given an estimated model of the taxable term structure and a marginal
tax rate §, we can immediately solve for the tax-exempt term structure, using
di=(1-¢&)9;.

Chen and Scott (1993), for example, provide estimates of one-, two-, and three-
factor exponential-affine models of the taxable default-free term structure. In each
of their models the interest rate equals the sum of the factors, r(t) = Z?zl Xi(t),
and the factors follow independent square-root processes under Q:

dXz(t) = (Hi + qi) (91 — Xz(t)) dt + o; \/ Xl(t) dWi(t),

The ¢; are related to the market price of risk and are identified by the time-series
properties of the term structure under the physical measure.®

Figure 1 shows the ratio y(¢,7)/y(t,7) for each of the three models with & =
0.30. The state variables are set at their unconditional means. Figure 2 shows
the corresponding forward-rate ratios f(¢,7)/f(t,7). The long-dashed line is the
one-factor model; the short-dashed line is the two-factor model; and the alternating
long-and-short dashed line is the three factor model. In all cases, condition (3.7) is
satisfied. However, it is clear that the one-factor model is fundamentally different
from the two- and three-factor models. Moreover, the one-factor model is quite
close to the naive relationship. However, it has been documented that the one
factor model does not capture the major features of the term structure in terms of
its shape and dynamics.

The par-coupon rate ratio is of some interest. The par coupon rate is the coupon
rate that makes a coupon bond be valued at par. For simplicity, we define the

5In this class of models, the PDE for bond prices decomposes into a set of ODEs.
5This parameterization produces bo; = (ki + ¢;) i, bis = — (ki + q;), bi; = 0 for j #4 > 0, Go = 0,
Giizof,andGij :0forj7é2>0
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par-coupon rate in terms of a bond that pays a continuous coupon at rate. The
value of a continuous-coupon bond that pays coupons at rate c is
T
/ cP(t,u)du+ P(t, ).
¢
(4.4)

1— P(t,7)

Therefore, the par-coupon rate (as a function of time and maturity) is
[ P(t,u)du’

c(t,7) =
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FIGURE 3. Par-coupon curve ratios: 30 percent tax rate

We define ¢(t, 7) analogously. We note that we can invert this relationship:
T T
P(t,7)=1-c(t,T) / exp <—/ c(t, u) du) ds.
t s

Suppose ¢(t, 7) = ¢ c(t, 7). Then we have
T T d)
P(t,7)=1—¢c(t, ) /t exp (—/S c(t,u) du) ds. (4.5)

There does not appear to be a clear relationship between P(t,7) as defined in (4.5)

and P(t,7)?.
5. TIME-DEPENDENT TAX RATES

One can easily generalize the foregoing results to a time-dependent tax rate, £(t),
where the time dependence is deterministic. The absence-of-arbitrage reasoning in

Section 3 leads to 7(t) = ¢(t) r(t), where ¢(t) = 1/(1 —£(t)). In terms of Section 4,
we have 9;(t) = (1 —£(t)) 6;. We now have time entering bond prices independently

of maturity: bond prices as a function of the state variables and maturity m = 7 —1¢

are given by
d
P(z,m;t) = exp (—Bo(m; t) — ZBi(m;t) a:,) ,

where the B;(m;t) solve
(5.1)

Bl(m;t) = 6;(m +t) + B(m; t)Tbi — %B(m; t)TGiB(m;t)

subject to B;(0;t) =0 for i = 0 to d.
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6. DEFAULT RISK

Tax-exempt bonds, however, are typically subject to default risk.” A convenient
way to handle default risk is to model the intensity of the risk of default (in a Poisson
process sense) under Q as the spread between risk-free tax-exempt spot rate and
the risky tax-exempt spot rate: 7(t) = 7(t) +h(t), where h(t) > 0.% This framework
allows us to can start from a default-free tax-exempt term structure and add a
default factor to get a tax-exempt term structure with credit risk. The relationship
between the default-free taxable spot rate and the credit-risky tax-exempt spot rate,
7(t), then is given by

7(t) = h(t) + (1 — &) 7(¢).
At the short end of the curve, we have

7(t) h(t)
ZO RO}

Now consider four kinds of zero-coupon bonds: (i) tax-exempt default-free (ideal),
(7) taxable default-free (Treasury), (i) tax-exempt defaultable (muni), and (iv)
taxable defaultable (corporate). Let 7. denote the instantaneous expected rate of
return on ideal bonds under the risk-neutral measure, and let rp, r,,, and r. denote
the gross expected returns on the other three bonds. Then we have the following
relations:

TT=QrTe, Tm=Teth, and 71c=¢crm = dcre + @ch.
If we let rr(t) = R(X(t)) and ¢, h(t) = H(X(t)), then we have
rr(t) = R(X(t))

1 1
nlt) = 5 ROX(@) + o HOX(D)
nw=%<mm+MMm
T

APPENDIX A.

Let V be the value of a strictly positive asset and D be the cumulative dividend
process for that asset.” We can write the dynamics of V' and D under the martingale
measure as follows:

dVV—(tt)) = py(t)dt + oy (t) T dW(t)
dVD—g) = up(t)dt +op(t) dW ().

"See Duffie and Singleton (1995) for a discussion of modeling defaultable term structures.

8Note that the intensity of default under the physical measure is given by h(t)/(1 4 A (t)), where
An(t) is the market price of default risk.

9See Duffie (1996, Chapter 6, Section K) for a discussion of cumulative dividends and deflated
gains.
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The deflated gain is given by

V(t )

Gﬁ(t): ()+/ (3)

BE) ~ Jo B(s)
The absence of arbitrage implies that G”(t) is a martingale under the standard
equivalent martingale measure Q. Since
_dV(t) +dD(t) —r(t) V(t)dt

() ’

dGP(t)

the absence of arbitrage implies
pv (t) =r(t) — po(t). (A1)

Given the tax rule dD(t) = —£dV (t), we have up(t) = —€ py(t), which we can
insert into (A.1) and solve for

where ¢ = 1/(1 — &).
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