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1. Introduction [incomplete]

The goal of this paper is to learn about the distribution of the autoregression coefficient
for real exchange rates, including the probability of a unit root. The paper is an exercise in
Bayesian statistics. The approach we take allows us to learn not only about the distribution
for each specific case for which we have data, but also the generic case for which we have
no data as yet. The posterior distribution for the generic case constitutes a well-informed
prior distribution for a new case when such data becomes available. The estimation of the
distribution for the generic case amounts to indirect density estimation for a latent variables.
With this in mind, we adopt a nonparametric Bayesian prior that embodies great flexibility
and allows for a unit root as a special case. As Poirier (1991, p. 384) says, “I think the case
can be made that [the unit root] is sufficiently special to warrant a prior atom.”

Literature review. Our approach is novel in a number of ways and has very little in
common with earlier Bayesian papers related to the subject such as Schotman and van Dijk
(1991) and DeJong and Whiteman (1991). See also Bauwens et al. (1999) for a comprehen-
sive review of the literature.

Background for Baysian inference. Some useful background reading: Koop (2003),
Greenberg (2013), Gelman et al. (2014), Kruschke (2011). Textbook introductions to Dirich-
let process mixture models can be found in Greenberg (2013) and Gelman et al. (2014). See
also Gershman and Blei (2012).

The prior presented here is an extension (allowing for a point mass) of the prior presented
in Fisher (2017).

Outline. In Section 2 we introduce the data and the likelihoods and compute Dickey–
Fullers tests. In Section 3 we compare two simple models and introduce some basic features
of our more general models. In Section 4 we present the hierarchical prior that allows for
learning. In Section 5 we specialize the distributions introduced in Section 4. In Section 6
we present an overview of the MCMC sampler. In Section 7 we investigate the data.

There are a number of appendices. Appendix B presents some technical remarks regard-
ing the prior presented in Section 3. Appendix C presents a thumbnail sketch of the measure
theory involved in mutually singular measures. In Appendix D we provide additional details
regarding the posterior. In Appendix E we describe the scheme we use for sampling from
the posterior distribution. In Appendix F we present the SUR likekhood. In Appenxid G
we describe a factor structure for the residuals. In Appendix H we show how to implement
a more general prior.

2. The data and the likelihood

In this section we describe the data, present the likelihoods, and perform a Dickey–Fuller
test.

The data. [Need to treat real exchange rates more fully.]
The real exchange rate between two countries involves the nominal exchange rate between

the two currencies and the two price levels. In logs, we have

yit = log(eit) + log(Pit)− log(P ∗t ), (2.1)
1
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Figure 1. LT real exchange rate data: annual, 1804–1992, in logs. Ex-
change rates are computed relative to GR.

where eit is the nominal exchange rate, Pit is the price level in country i and P ∗t is the price
level in a “reference” country. If the countries share the same currency, then eit = 1 and

yit = log(Pit)− log(P ∗t ). (2.2)

[Need to describe the data more fully.] See Lothian and Taylor (1996).
The data are shown in Figures 1 and 2. Each series is normalized to have a mean of zero.

We break the Euro-related data into two groups, based on when the Euro was adopted.
The year-to-year variance in the data is dramatically different between the two eras.

The likelihood. Let yit denote the log of the real exchange rate between to countries,
where i indexes the exchange rate and t indexes time. Let Yi = (yi1, . . . , yiTi) and Y1:n =
(Y1, . . . , Yn). Consider the following model for annual data:

yit = αi + βi yi,t−1 + εit, εit
iid∼ N(0, σ2

i ), (2.3)

for t ≥ 2.
Given (2.3), we can express the model for the data as

p(Yi|αi, βi, σ2
i ) =

Ti∏
t=2

N(yit|αi + βi yi,t−1, σ
2
i ). (2.4)

Note we condition on yi1. We integrate out the nuisance parameters (αi, σ
2
i ) using the

Jeffreys prior where p(αi, σ
2
i ) ∝ p(σ2

i ) and p(σ2
i ) is given in (A.4),1 producing the marginal

likelihood for βi:

p(Yi|βi) = Student(βi|mi, s
2
i , νi) ∝

∫∫
p(Yi|αi, βi, σi) p(σ2

i ) dσ
2
i dαi, (2.5)

1If a0 = b0 = 0 [see Appendix A], then p(αi, σ
2
i ) ∝ 1/σ2

i , which is the Jefferys prior. The Jeffreys prior
is improper (it does not integrate to a finite value) and it is interpreted as uninformative.
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Figure 2. Euro-related real exchange rate data: annual, 1957–2016, in logs.
Exchange rates are computed relative to DE. The last observation of Euro 1
is 1998, which is also the first observation of Euro 2.

where (mi, si, νi) depends on Yi as shown in Appendix A. See Table 1.
At this stage we have treated the likelihoods as independent in the sense that

p(Y1:n|β1:n) =
n∏
i=1

p(Yi|βi), (2.6)

where β1:n = (β1, . . . , βn). This follows from the assumed independence of εit and εjt. In
Appendix F we will relax this assumption, in which case we will not be able to factor the
joint likelihood as in (2.6).

Dickey–Fuller tests. The sole purpose here is to confirm that our Euro-related data are
not exceptional with respect to traditional unit root tests.

One version of a Dickey–Fuller test involves the “t statistic”

tTi =
mi − 1

si
(2.7)

to determine whether to reject the null hypothesis of a unit root.2 In particular, the null
hypothesis is rejected if tTi < c where c is a critical value in the applicable Dickey–Fuller
table. The 5% critical values are shown in Table 2.3

As indicated in Table 1, the null is rejected for each of the two LT data series, but the
null is not rejected for all but one of the Euro-related series. Taking the both Euro-related
data sets together, we see that the null is rejected 5% of the time at the 5% level, which
is consistent with the null being true for the Euro-related series as a whole. This finding
is consistent with what many researchers have found looking at a variety of post-war series

2This assumes a0 = b0 = 0 in the prior for σ2
i .

3They are calculated via linear interpolation for Case 2 in Table B.6 in Hamilton (1994).
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Table 1. The data in three groups. Note νi = Ti − 3. LT exchange rates
relative to UK; Euro exchange rates relative to DE.

mi si νi Reject null
LT 1 US 0.901 0.032 186 X

2 FR 0.782 0.046 186 X
Euro 1 3 AT 0.978 0.044 39

4 BE 0.733 0.099 39
5 FI 0.805 0.098 39
6 FR 0.768 0.093 39
7 GR 0.882 0.058 39
8 IE 0.844 0.082 39
9 IT 0.855 0.080 39

10 NL 0.877 0.059 39
11 PT 0.742 0.115 39
12 ES 0.821 0.091 39

Euro 2 13 AT 0.994 0.042 16
14 BE 0.951 0.060 16
15 FI 0.708 0.158 16
16 FR 0.789 0.183 16
17 GR 0.853 0.062 16
18 IE 0.743 0.092 16
19 IT 0.837 0.057 16
20 NL 0.904 0.042 16
21 PT 0.804 0.057 16 X
22 ES 0.859 0.052 16

Table 2. Critical values for Dickey–Fuller test of Case 2.

T c.05

189 −2.88
42 −2.95
19 −3.02

at a variety of frequencies. We are not interested in parsing these results any further and
instead we now switch gears.

3. A simple Bayesian framework

We begin our Bayesian analysis by first examining a simple model that does not involve
learning across exchange rates. We compare the special case of a unit root to the simple
model for each exchange rate separately as well as for groups of exchange rates. Along the
way we introduce a number of assumptions and conventions that we rely on throughout the
paper.



REAL EXCHANGE RATES AND UNIT ROOTS: LEARNING ABOUT THE DISTRIBUTION 5

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

LT

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

Euro1

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

Euro2

Figure 3. Truncated Student t distributions by group.

Bayes’ rule. We begin by introducing Bayes’ rule:

p(βi|Yi) =
p(Yi|βi) p(βi)

p(Yi)
(3.1)
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Country Autocorrelation t-ratio p-value

1/1957 to 12/1998
Austria 0.949 -0.905 0.787
Belgium 0.827 -2.338 0.160
Finland 0.752 -2.806 0.058
France 0.755 -2.878 0.049
Greece 0.842 -2.125 0.235
Ireland 0.790 -2.275 0.181
Italy 0.879 -1.702 0.429
Netherlands 0.820 -2.415 0.138
Portugal 0.753 -2.295 0.174
Spain 0.788 -2.233 0.195

1/1999 to 12/2016
Austria 0.943 -0.626 0.861
Belgium 0.907 -1.157 0.693
Finland 0.607 -2.378 0.149
France 0.662 -1.571 0.495
Greece 0.764 -2.745 0.068
Ireland 0.806 -2.669 0.081
Italy 0.775 -2.457 0.128
Netherlands 0.596 -3.275 0.017
Portugal 0.686 -3.513 0.009
Spain 0.848 -2.139 0.230

Table 3. Dickey-Fuller Tests on Real Exchange Rates. The tests are run
with the number of lagged changes estimated using the Schwarz Information
Criterion. The number of lagged changes included for the period 1/1957
to 12/1998 is zero for all countries other than Belgium, which has one lag,
and Ireland, which has 12 lags. The number of lagged changes included for
the period 1/1999 to 12/2016 is 12 for all countries other than Austria and
France which have 13 lagged changes included in the test regressions.

which expresses the posterior distribution for βi, p(βi|Yi), in terms of the likelihood of βi,
p(Yi|βi) [which is given in Section 2], the prior distribution for βi, p(βi), and the marginal
likelihood of the data (according to the model: the likelihood and the prior)

p(Yi) =

∫
p(Yi|βi) p(βi) dβi. (3.2)

Throughout the paper we impose the following restriction: βi ∈ [0, 1]. This restriction
rules out both explosive behavior and negative autocorrelation. (The general approach we
present does not depend on this restriction.)
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Table 4. Normalized values: gi =
∫ 1

0 p(Yi|βi) dβi, hi = p(Yi|βi = 1), zi =

hi/gi, and di = p(Yi|β∗i ). Overall product:
∏22
i=1 zi = 1.2 × 10−8. Note, the

last column displays the maximum evidence against a unit root: di/hi =
1/B∗i .

gi hi zi = hi/gi
∏n
i=1 zi di di/hi

LT 1 0.9988 0.1227 0.1229 12.3989 101.0
2 1.0000 0.0002 0.0002 2.5× 10−5 8.6627 42,024.9

Euro 1 3 0.6914 7.8603 11.3685 8.9495 1.1
4 0.9948 0.1324 0.1331 3.9974 30.2
5 0.9734 0.5818 0.5976 4.0595 7.0
6 0.9914 0.2224 0.2243 4.2581 19.1
7 0.9763 0.8924 0.9142 6.8633 7.7
8 0.9685 0.8067 0.8329 4.8635 6.0
9 0.9604 0.9948 1.0358 4.9254 5.0

10 0.9773 0.8366 0.8560 6.6872 8.0
11 0.9843 0.3106 0.3155 3.4328 11.1
12 0.9724 0.6482 0.6666 2.9× 10−2 4.3695 6.7

Euro 2 13 0.5591 9.3220 16.6724 9.4357 1.0
14 0.7867 4.6044 5.8525 6.5115 1.4
15 0.9581 0.4811 0.5021 2.4851 5.2
16 0.8674 1.0862 1.2522 2.1477 2.0
17 0.9843 0.4997 0.5077 6.3222 12.7
18 0.9933 0.1492 0.1503 4.2480 28.5
19 0.9940 0.2151 0.2164 6.8392 31.8
20 0.9816 0.8553 0.8714 9.2941 10.9
21 0.9984 0.0607 0.0608 6.9295 114.1
22 0.9922 0.3055 0.3079 1.7× 10−2 7.5159 24.6

As a starting point, let the prior for βi be the uniform distribution over the unit interval:

p(βi) = Uniform(βi|0, 1). (3.3)

With this prior, the posterior distribution for βi is proportional to the likelihood of βi over
the unit interval:

p(βi|Yi) =
p(Yi|βi)∫ 1

0 p(Yi|βi) dβi
=
p(Yi|βi)
gi

, (3.4)

where gi :=
∫ 1

0 p(Yi|βi) dβi. The posterior distributions are truncated Student t distributions
[see Figure 3]. See Table 4 for the specific values of gi. The marginal likelihood of the data
(according to this model) is simply the area under the likelihood (over the unit interval);
more generally, p(Yi) is an average of the likelihood for each value of βi ∈ [0, 1].

Let us now turn to the special case of a unit root, characterized by βi = 1. The likelihood
of the special case is simply the likelihood evaluated at βi = 1, namely p(Yi|βi = 1). For
reference, let hi := p(Yi|βi = 1). See Table 4 for the specific values of hi.
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Model comparison. What can be said about the relative merits of the two models? A
standard Bayesian approach involves comparing models via the likelihood of the data ac-
cording to the model. We take that approach here. First we make case-by-case comparisons,
after which we make group-wise comparisons. Before proceeding we note that the Bayes
factor for a sharp hypothesis (such as βi = 1) depends strongly on the prior for βi over
the unit interval, which we have thus far assumed is flat. Below we will investigate this
dependence by entertaining a variety of priors.

Let M0 denote the model that allows βi to vary over the unit interval and let M1 denote
the model that restricts βi to equal one. The fundamental difference between the two models
can be characterized in terms of the probability of a unit root:

Pr[βi = 1|M0] = 0 and Pr[βi = 1|M1] = 1. (3.5)

The labeling of the models reflects the probability of a unit root and not any notion of null
or alternative hypotheses.

Bayes’ rule can be applied at many levels. In (3.1), it is applied at the level of alternative
values for the parameter βi. For the purpose of model comparison, Bayes’ rule is applied
at the level of the two alternative models M0 and M1. Applied to M0 and M1, Bayes’
rule expresses the posterior probability of model Mj in terms of its likelihood p(Yi|Mj), its
prior probability p(Mj), and the likelihood of the data according to the collection of models
under consideration (in the denominator):

p(Mj |Yi) =
p(Yi|Mj) p(Mj)

p(Yi|M0) p(M0) + p(Yi|M1) p(M1)
. (3.6)

The posterior odds ratio in favor of M1 relative to M0 is given by p(M1|Yi)/p(M0|Yi).
Using (3.6), the posterior odds ratio can be expressed in terms of the prior odds ratio,
p(M1)/p(M0), and the ratio of the likelihoods of the two models:

p(M1|Yi)
p(M0|Yi)

=
p(M1)

p(M0)
× p(Yi|M1)

p(Yi|M0)
. (3.7)

The ratio of the likelihoods is called the Bayes factor. Let us assume

p(M0) = p(M1) = 1/2, (3.8)

in which case the prior odds ratio equals one. Then the posterior odds ratio equals the
Bayes factor and the posterior probability of the model with a unit root is

p(M1|Yi) =
p(Yi|M1)

p(Yi|M0) + p(Yi|M1)
. (3.9)

We now apply this framework for model comparison in light of the flat prior we have
assumed for βi. The likelihoods of the two models have already been calculated:

p(Yi|M0) =

∫
p(Yi|βi) dβi = gi (3.10)

p(Yi|M1) = P (Yi|βi = 1) = hi. (3.11)
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The Bayes factor in favor of the unit-root model is4

Bi =
p(Yi|M1)

p(Yi|M0)
=

P (Yi|βi = 1)∫ 1
0 p(Yi|βi) dβi

=
hi
gi
. (3.12)

The posterior probability of the model with a unit root is

p(M1) =
hi

gi + hi
. (3.13)

See Table 4 for the specific values of zi := hi/gi.

Model averaging. Although we have cast the discussion in terms of model choice, it is not
necessary to adopt one of the two models and discard the other. An alternative approach
known as Bayesian Model Averaging (BMA) combines the two models. The posterior
distribution for βi becomes a weighted average of the two models, using the posterior model
probabilities as the weights:

p(βi|Yi) = p(βi|M0, Yi) p(M0|Yi) + p(βi|M1, Yi) p(M1|Yi). (3.14)

For future reference, it is convenient to write this posterior distribution as

p(βi|Yi) =

{
p(M1|Yi) βi = 1(
1− p(M1|Yi)

)
p(βi|M0, Yi) βi < 1

, (3.15)

where p(M1|Yi) is the posterior probability of a unit root and p(βi|M0, Yi) is the posterior
density over the unit interval. Given the prior in the example [see (3.3) and (3.8)], this
becomes

p(βi|Yi) =


hi

hi + gi
βi = 1

gi
hi + gi

(
p(Yi|βi)
gi

)
βi < 1

. (3.16)

Thus hi/(hi + gi) is the posterior probability of a unit root for βi and p(Yi|βi)/gi is the
posterior density for βi over the unit interval.

Empirical comparisons. The comparisons in terms of the Bayes factors (and posterior
probabilities) are computed from the same Student t distributions as were used for the
Dickey–Fuller tests. However, the information that is being extracted from them is quite
different. The Bayes factor uses the likelihood of the data, which involves the density at
βi = 1 and the average density over the unit interval.

For the LT data, the unit-root model is not favored in either case. By contrast, for the
Euro 1 data, the unit-root model is favored in 3 of 10 cases, while for the Euro 2 data it
is favored in 4 of 10 cases. Thus for the Euro-related data as a whole, the unit-root model
is favored in 35% of the cases. The strength of the evidence varies substantially across the
cases, ranging from a factor of more than 15 in favor to a factor of more than 13 against.

We now turn to comparing the two models on a group-wise basis. When applied to a
group of cases, model M0 asserts that no exchange rate has a unit root while model M1

asserts that every exchange rate does. (In later sections we will examine more general
models in which some exchange rates in a group may have unit roots while others may not.)

4Given the current setup, the Bayes factor equals the density of the posterior at βi = 1: Bi = p(βi = 1|Yi).
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The likelihood of a group of independent cases is simply the product of individual case
likelihoods. The Bayes factor in favor of the model with all unit roots relative to the model
with no unit roots is given by

∏n
i=1 Bi =

∏n
i=1 zi. We see that with this comparison of two

simple models, we arrive at a somewhat different interpretation of the data. For all three
data sets, the model of no unit roots is preferred to the model of all unit roots. For the two
Euro-related data sets, the ratio is 0.025.

Sensitivity to the prior. As we noted above, the Bayes factor can be quite sensitive to
the prior for βi over the unit interval. Here we examine that issue in some detail.

Consider a prior of the following form:

p(βi|a, b) = Beta(βi|a, b) = 1[0,1](βi)
βa−1
i (1− βi)b−1

B(a, b)
, (3.17)

where B(a, b) is the beta function, B(a, b) = Γ(a) Γ(b)
Γ(a+b) =

∫ 1
0 x

a−1 (1 − x)b−1 dx. We have

indexed the prior by the parameters of the beta distribution. The mean of βi according to
this prior is a/(a+ b) and the variance is a b/

(
(a+ b)2 (a+ b+1)

)
. The uniform distribution

is a special case of this prior: p(βi|a = 1, b = 1) = Uniform(βi|0, 1). The model indexed by
(a, b) will take the role of M0 in model comparison and model averaging. We will refer to
this as the base model. Note Pr[βi = 1|(a, b)] = 0.

The posterior for βi can be expressed conditional on (a, b):

p(βi|Yi, a, b) =
p(Yi|βi) p(βi|a, b)

p(Yi|a, b)
(3.18)

where the likelihood of the data according to the model (a, b) is5

p(Yi|a, b) =

∫
p(Yi|βi) p(βi|a, b) dβi. (3.19)

The Bayes factor in favor of the model with a unit root relative to the base model indexed
by (a, b) is:

Bi(a, b) :=
p(Yi|βi = 1)

p(Yi|a, b)
=

hi
p(Yi|a, b)

. (3.20)

The first thing to note is that the numerator of the Bayes factor is fixed at p(Yi|βi = 1).
Consequently the Bayes factor varies inversely with the likelihood of the base model (a, b).
Therefore, a moderately-well informed prior will produce a higher likelihood for the base
model and will reduce the Bayes factor in favor a unit root; similarly, an ill-informed prior
that reduces the likelihood of the base model will increase the Bayes factor in favor of a
unit root.

We do not have space to provide a complete investigation. Instead we touch on a few
special and/or interesting cases. First, since (as noted above) the uniform distribution is a
special case of the beta distribution, p(Yi|1, 1) = gi and Bi(1, 1) = zi.

Next we consider two limiting cases: as a → ∞ all of the probability of Beta(βi|a, b)
becomes concentrated on βi = 1, while as b → ∞ all of the probability becomes concen-
trated on βi = 0. In the first case, the base model converges to the unit-root model and

5The likelihood p(Yi|a, b) will appear prominently in the more general model described below.
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consequently

lim
a→∞

Bi(a, b) =
p(Yi|βi = 1)

p(Yi|βi = 1)
= 1. (3.21)

In the second case, the base model converges to a model with no serial correlation:

lim
b→∞

Bi(a, b) =
p(Yi|βi = 1)

p(Yi|βi = 0)
, (3.22)

This comparison favors a unit root for all but one of our exchange rates (in Euro 2), typically
by astronomical amounts. [Need to include these numbers.]

Finally, consider the following prior:6 Let βi = β∗i where

β∗i := argmax
βi

p(Yi|βi) subject to βi ∈ [0, 1]. (3.23)

For our data, β∗i = mi, where mi is given in Table 1. Let di := p(Yi|β∗i ). [See Table 4
for specific values for di.] The model based on this prior provides the maximum evidence
against the unit-root model because it concentrates its prior on the maximum (allowed)
likelihood value. The Bayes factor in favor of the unit-root model relative to this model is

B∗i =
p(Yi|βi = 1)

p(Yi|βi = β∗i )
=
hi
di
. (3.24)

Table 4 displays values for 1/B∗i , the maximum evidence against a unit root.

Summary and limitations. Given the current setup, we are able to learn about βi from
Yi. The prior for βi plays an important role in what we learn: It affects the posterior
distribution over the unit interval and it affects the Bayes factor in favor of a unit root. In
addition, the prior odds ratio plays an important role in determining to posterior odds ratio
in favor of a unit root. We have seen, for example, that ill-informed priors can produce
strong evidence in favor of a unit root.

Presumably one should adopt a moderately well-informed prior. But how does one acquire
such a prior? Unfortunately within the current setup it is not possible: There is no way
to learn about βj from Yi. Such learning must come from the dependence between βi and
βj in the prior. In the following section we provide a framework that has this feature and
therefore allows one to apply what one learns about one exchange rate to another and
thereby acquire a moderately well-informed prior.

4. Framework for learning

Bayesian inference involves learning. In Section 3 we saw how to learn about the co-
efficient βi from the data Yi. But, as we noted, there was no learning about βj from Yi
and consequently it was not possible to obtain a reasonably well-informed prior for βn+1

given the data Y1:n. In this section, we show how to extend the framework to allow for
this broader type of learning — learning across regimes. The framework involves prior
dependence between βn+1 and β1:n.

6This prior can be constructed as a limiting value of a beta prior as well.
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Density estimation. At the heart of our approach is the idea that we can learn about one
coefficient from other coefficients. For example, if we observed a collection of coefficients
then we could produce a reasonably-well informed prior for another — as yet unobserved
— coefficient. Of course the coefficients are not observed directly; they are observed only
indirectly and with error. Nevertheless, it is useful to begin as if we did indeed observe a
collection of coefficients, β1:n. Let βn+1 denote the (as yet unobserved) coefficient for which
we seek a reasonably-well informed prior. Given suitable assumptions (described below),
we can form a distribution for βn+1 based on β1:n,

p(βn+1|β1:n). (4.1)

Since we are assuming the coefficients β1:n are observed, (4.1) would be called the posterior
predictive distribution. Computing this predictive distribution amounts to an exercise in
Bayesian density estimation. For density estimation, it is natural to adopt assumptions that
allow for a wide range of possible distributions, including the possibility of multi-modality.

Indirect density estimation. Having indicated a framework for learning about βn+1

when a collection of coefficients is observed, we now expand the framework to account for
the fact that the coefficients are not actually observed directly — they are latent variables.
It is useful to think of the information available regarding the coefficients as a collection
of “noisy signals” for each βi ∈ β1:n.7 The noisy signals constitute the (joint) likelihood
p(Y1:n|β1:n). Within this setup, distribution (4.1) provides the link between the coefficient
for which we have no signal and those for which we do have signals:

p(βn+1|Y1:n) =

∫
p(βn+1|β1:n) p(β1:n|Y1:n) dβ1:n, (4.2)

where p(β1:n|Y1:n) is the posterior distribution for β1:n given Y1:n. Note that p(βn+1|Y1:n)
is the reasonably-informed prior we seek. It is the result of indirect density estimation.

In its role in (4.2) as a link, the distribution p(βn+1|β1:n) has the interpretation of a
conditional prior. The necessity of prior dependence (among the coefficients) for leaning
is clear in (4.2). In particular, if βn+1 were independent of β1:n in the prior, then nothing
would be learned about βn+1 since in that case p(βn+1|Y1:n) = p(βn+1).

Generic and specific cases. When we assumed β1:n was observed, there was an obvious
asymmetry between βi ∈ β1:n and βn+1. This asymmetry carries over to the situation
where β1:n is latent. In particular, we observe signals for βi ∈ β1:n but we do not observe
a signal for βn+1. Based on this distinction, we refer to βi as a specific case because we
have a (specific) signal for it and we refer to βn+1 as the generic case because it applies to
any coefficient for which we as yet have no signal (and for which we judge β1:n to provide
an appropriate basis for inference). The specific cases are the ones that appear in the
likelihood:

p(Y1:n|β1:n+1) = p(Y1:n|β1:n). (4.3)

The generic case does not appear and therefore is not identified.
Equation (4.2) gives a representation of the posterior distribution for the generic case in

terms of the posterior distribution for β1:n. In addition, we are interested in the marginal

7In passing, note that as the number of observations relevant to βi increases [i.e., as Ti increases], the
noise in the measurement gets smaller and in the limit we end up where βi is effectively observed.
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posterior distributions for each of the specific cases. Here we present an intuitive repre-
sentation that relies on the likelihood factoring as in (2.6). The general case is somewhat
complicated and is treated in Appendix D.

When the likelihood factors, the posterior distribution for a specific case can be written
as follows:

p(βi|Y1:n) =
p(Yi|βi) p(βi|Y −i1:n)

p(Yi|Y −i1:n)
, (4.4)

where Y −i1:n excludes Yi so that βi is generic with respect to Y −i1:n. Since the posterior is an
average of the likelihood and the prior, the posterior for βi is “shrunk” towards the generic
distribution based on all the other data.

Density estimation. The model for density estimation adopted here is a Dirichlet Process
Mixture (DPM) model. The DPM model can be expressed in terms of a stick-breaking
prior.8 The foundational details do not concern us here. A textbook treatment of the DPM
may be found in Gelman et al. (2014).

The density estimate (4.1) can be expressed as

p(βn+1|β1:n) =

∫
p(βn+1|ψ) p(ψ|β1:n) dψ, (4.5)

where ψ is a (hyper)parameter. The model is completed by specifying the prior p(ψ) and
the likelihood

p(β1:n|ψ) =

n∏
i=1

p(βi|ψ). (4.6)

The individual likelihood p(βi|ψ) is an infinite-order mixture:

p(βi|ψ) =
∞∑
c=1

vc f(βi|θc), (4.7)

where ψ = (v, θ) and v = (v1, v2, . . .) denotes an infinite collection of nonnegative mixture
weights that sum to one and θ = (θ1, θ2, . . .) denotes a corresponding collection of mixture-
component parameters. The density f( · | · ) is called the kernel.

The prior for ψ can be expressed as

p(ψ) = p(v) p(θ) = p(v)

∞∏
c=1

p(θc). (4.8)

The prior for θc is called the base distribution. We present the kernel and base distribution
in Section 5.

8See Ishwaran and James (2001) for a general characterization of stick-breaking priors and associated
Gibbs samplers.
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Prior for the mixture weights. The standard prior for v is given by

v|η ∼ Stick(η), (4.9)

where Stick(η) denotes the stick-breaking distribution given by9

vc = uc

c−1∏
`=1

(1− u`) where uc
iid∼ Beta(1, η). (4.10)

The parameter η is called the concentration parameter ; it controls the rate at which the
weights decline on average. In particular, the weights decline geometrically in expectation:

E[vc|η] = ηc−1 (1 + η)−c. (4.11)

Note E[v1|η] = 1/(1 + η) and E
[∑∞

c=m+1 vc|η
]

=
(
η/(1 + η)

)m
.

The number of components in (4.7) required to represent a given distribution depends
on the number of modes and the shape of the modes. The concentration parameter plays
an important role in determining the effective number of components. If η is small, then
the first few weights will dominate and the number of mixture components with nontrivial
probabilities will be small. In the limit as η → 0, the mixture collapses to a single compo-
nent. By contrast if η is large, then no single component (or small collection of components)
will dominate and more components will be available (on average).

Prior for the concentration parameter. Because the concentration parameter plays an im-
portant role in determining the flexibility of the prior for a given finite sample size n, it is
be important to allow the data to help determine its magnitude. We adopt the following
prior:

p(η) = Log-Logistic(η|1, 1) =
1

(1 + η)2
. (4.12)

This distribution does not have a finite mean; its median equals one. This prior implies
(η/(1 + η))m ∼ Beta(1/m, 1).

Taking the prior for the concentration parameter into account, we restate the marginal
prior for the mixture weights as p(v) =

∫
p(v|η) p(η) dη.

5. Kernel and base distribution

In this section we specify the kernel f(βi|θc) and the base distribution p(θc), each of
which introduces some novelty. The kernel and the base distribution are based on Fisher
(2017) with extensions that accommodate a point mass.

9Start with a stick of length one. Break off the fraction u1 leaving a stick of length 1− u1. Then break
off the fraction u2 of the remaining stick leaving a stick of length (1−u1) (1−u2). Continue in this manner.
Alternative stick-breaking distributions can be constructed by changing the distribution for uc.
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Kernel. We specify the conditional prior for βi (i.e., the kernel). Let θc = (ac, bc, wc) and
let

f(βi|θc) = f(βi|ac, bc, wc) =

{
wc βi = 1

(1− wc)Beta(βi|ac, bc) βi < 1
. (5.1)

This distribution includes the probability of a unit root, wc ∈ [0, 1], and a density over the
unit interval, Beta(βi|ac, bc), where ac and bc are positive.10 This distribution is sometimes
called a one-inflated beta distribution.

Base distribution. We begin by assuming prior independence between (ac, bc) and wc:

p(ac, bc, wc) = p(ac, bc) p(wc). (5.2)

Let11

p(wc) = Beta
(
wc|ζ φ, ζ (1− φ)

)
. (5.3)

Note E[wc] =
∫ 1

0 wc p(wc) dwc = φ. In addition, E[(wc − φ)2] = φ (1 − φ)/(1 + ζ). The
uniform distribution is delivered by φ = 1/2 and ζ = 2. In the limit as ζ → ∞ the prior
for w collapses to a point mass located at φ, in which case there is no learning about wc.
At the other extreme, as ζ → 0 the prior degenerates to a pair of point masses located at 0
and 1.12

In order to specify the prior for (ac, bc) it is convenient to change variables to

(jc, kc) = (ac, ac + bc − 1). (5.4)

We adopt the prior p(jc, kc) = p(jc|kc) p(kc), where

p(jc|kc) =

{
1/kc jc ∈ {1, . . . , kc}
0 otherwise

. (5.5)

Let kc − 1 ∼ Geometric(ξ), so that p(kc) = ξ (1− ξ)kc−1 for kc.
13 Then the prior for (ac, bc)

is

p(ac, bc) = p(jc, kc|I)|jc=ac,kc=ac+bc−1 =
ξ (1− ξ)ac+bc−2

ac + bc − 1
. (5.6)

Whenever it is convenient we will adopt the parameterization θc = (jc, kc, wc) in place of
θc = (ac, bc, wc). A key feature of the prior is that the expectation of the density component

10See Appendix C for a brief discussion of the representation of densities involving mutually singular
measures.

11The unit root component can be removed via the restriction wi ≡ 0.
12If used in conjunction with η = 0 (so that all cases share the same wc), this latter prior would be

appropriate for an all-or-none view of unit roots: Either all cases have unit roots or no case has.
13Note E[kc] = 1/ξ.
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given kc is uniform:

E[Beta(βi|jc, kc − jc + 1)|kc] =

kc∑
jc=1

Beta(βi|jc, kc − jc + 1) p(jc|kc)

=
1

kc

kc∑
jc=1

Beta(βi|jc, kc − jc + 1)

= Uniform(βi|0, 1).

(5.7)

A generalization that allows for alternative prior predictive distributions is discussed in
Appendix H.

We are now equipped to express the marginal prior for βi:

p(βi) =

∫
f(βi|θc) p(θc) dθc =

{
E[wc] βi = 1

(1− E[wc])Uniform(βi|0, 1) βi < 1

=

{
1/2 βi = 1

1/2 βi < 1
.

(5.8)

The second line of (5.8) assumes φ = 1/2. The marginal prior over the unit interval is flat,
which follows from (5.7). Non-flat priors can be obtained by modifying the kernel as shown
in (H.1).

Comment. It is instructive to examine the posterior distribution for βi|Yi in isolation (i.e.,
without any other regimes from which to learn). Referring to (4.4), we have

p(βi|Yi) =
p(Yi|βi) p(βi)∫
p(Yi|βi) p(βi) dβi

, (5.9)

where p(βi) is given in (5.8). This prior [i.e., (5.8)] is equivalent to the prior used in the
Bayesian Model Averaging example in Section 3 as [see (3.3) and (3.8)]. Therefore, p(βi|Yi)
is given in (3.16). Thus, for a single coefficient in isolation, we obtain the same inferences
as from the BMA example in Section 3.

Features of the prior. It may be useful to understand some features of the prior. The
prior encodes both a willingness to learn (via dependence) and open-mindedness (via flexi-
bility).

Dependence. Dependence in the prior among the betas is the key to the ability to learn
about βn+1 from β1:n. Without this dependence there is no learning. We now examine how
this dependence is structured within the prior by focusing on the joint prior distribution
for (β1, β2), which we derive in stages. We begin with

p(β1, β2|v) =

∫
p(β1|v, θ) p(β2|v, θ) p(θ) dθ

=

( ∞∑
c=1

v2
c

)∫
f(β1|θc) f(β2|θc) p(θc) dθc +

(
1−

∞∑
c=1

v2
c

)
p(β1) p(β2),

(5.10)
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Table 5. Various probabilities according the joint prior predictive distribution (5.13).

Condition Probability

β1 = 1 ∧ β2 = 1 1/2 (1/3) + 1/2 (1/4) = 7/24
β1 < 1 ∧ β2 < 1 1/2 (1/3) + 1/2 (1/4) = 7/24
β1 < 1 ∧ β2 = 1 1/2 (1/6) + 1/2 (1/4) = 5/24
β1 = 1 ∧ β2 < 1 1/2 (1/6) + 1/2 (1/4) = 5/24

where
∑∞

c=1 v
2
c is the probability that β1 and β2 share the same component. As noted

above, E[
∑∞

c=1 v
2
c |η] = 1/(1 + η). Consequently,

p(β1, β2|η) =

∫
p(β1, β2|v) p(v|η) dv

=
1

1 + η

∫
f(β1|θc) f(β2|θc) p(θc) dθc +

η

1 + η
p(β1) p(β2).

(5.11)

Note that β1 and β2 become independent as η →∞.
Given our prior for η [see (4.12)], the unconditional probability that β1 and β2 share the

same component is ∫ ∞
0

1

1 + η
p(η) dη =

∫ ∞
0

1

(1 + η)3
dη =

1

2
. (5.12)

Therefore,

p(β1, β2) =
1

2

∫
f(β1|θc) f(β2|θc) p(θc) dθc +

1

2
p(β1) p(β2). (5.13)

See Table 5 for various probabilities according to (5.13). Assuming both β1 and β2 are less
than one, the joint density is

p(β1, β2) =
∞∑
kc=1

p(β1, β2|k2) p(kc). (5.14)

A closed-form expression is not available. Instead we can examine a single term in which

p(β1, β2|kc) =
1

2
+

1

2 kc

kc∑
jc=1

Beta(β1|jc, kc − jc + 1)Beta(β2|jc, kc − jc + 1)

=
1

2
+
kc
2

(
(1− β1) (1− β2)

)kc−1
2F1

(
1− kc, 1− kc; 1;

β1 β2

(1− β1) (1− β2)

)
, (5.15)

where 2F1 is the hypergeometric function. For kc = 1 the distribution is uniform on the
unit square. For kc > 1, β1 and β2 are positively related; the strength of the dependence

is increasing in kc. In all cases, the marginals are uniform:
∫ 1

0 p(β1, β2|kc) dβ1 = 1. See
Figure 4 for a plot of p(β1, β2|kc = 10).
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Figure 4. p(β1, β2|kc = 10) given β1 < 1 ∧ β2 < 1.

Open-mindedness. An open-minded prior allows for substantial variation around the prior
predictive distribution. The prior predictive distribution is given in (5.8). Variation around

it can be examined as follows. Make draws {ψ(r)}Rr=1 from the prior, where ψ(r) iid∼ p(ψ).
The prior predictive can be approximated by

p(βi) ≈
1

R

R∑
r=1

p(βi|ψ(r)). (5.16)

For a subset of the draws, plot p(βi|ψ(r)) to examine the amount and sort of variation. In
Figure 5, we display ten draws of the density p(βi|ψ) given βi < 1.

6. MCMC sampler

In the previous sections we described the likelihood and the prior. In this section we
show how to compute the posterior distribution using a a Markov Chain Monte Carlo
(MCMC) sampler. We adopt a Gibbs-sampler approach, decomposing an unweildly high-
dimensional joint distribution into a collection of manageable lower-dimensional conditional
distributions.

The unknowns are β1:n, ψ, and η. To this list we add another. As is typical when dealing
with mixture models, it is convenient to introduce classification variables z1:n = (z1, . . . , zn),
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Figure 5. Illustrating one aspect of an open-minded prior: p(βi|ψ) given
βi < 1 is plotted for each of ten draws from p(ψ). Note that p(βi) = 1.

where zi = c signifies βi is assigned to cluster c. The joint posterior distribution for the
augmented collection of unknowns is

p(β1:n, ψ, η, z1:n|Y1:n). (6.1)

This distribution is completely characterized by the following two full conditional distribu-
tions:

p(ψ, η, z1:n|Y1:n, β1:n) = p(ψ, η, z1:n|β1:n) (6.2a)

p(β1:n|Y1:n, ψ, η, z1:n) =
n∏
i=1

p(βi|Yi, ψ, z1:n). (6.2b)

Note that β1:n is treated as known in (6.2a) while it is treated as unknown (6.2b). The
Gibbs sampler alternates between (6.2a) and (6.2b). The right-hand sides of (6.2) indicate
simplifications that play important roles in the sampler. In particular, on the right-hand
side of (6.2a) the data are absent and on the right-hand side of (6.2b) the conditional
distributions for βi are independent.14

Step 1. We begin with (6.2a).
As noted above, the prior we have adopted is equivalent to a Dirichlet Process Mixture

(DPM) model. As such draws from (6.2a) may be computed via any number of existing
algorithms. The simplest algorithm to describe and implement is the blocked Gibbs sampler

14This latter factorization relies on the the joint likelihood factoring. The case where the likelihood does
not factor is treated in the Appendices.
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described in Gelman et al. (2014, pp. 552–553). This sampler relies on approximating
p(βi|ψ) with a finite sum: Choose m large enough to make

(
η/(1 + η)

)m
close enough to

zero (on average) and set um = 1.
The distribution p(ψ, η, z1:n|β1:n) itself is completely characterized by the following four

full conditional distributions:

p(z1:n|β1:n, v, θ, η) =

n∏
i=1

p(zi|βi, v, θ) (6.3a)

p(θ|β1:n, z1:n, v, η) =

m∏
c=1

p(θc|Bc) (6.3b)

p(v|β1:n, z1:n, θ, η) = p(v|z1:n, η) (6.3c)

p(η|β1:n, z1:n, v, θ) = p(η|z1:n), (6.3d)

where Bc = {βi ∈ β1:n : zi = c}, the collection of observations for which zi = c. Let
nc = |Bc|, the number of times c occurs in z1:n. Note

∑m
c=1 nc = n. (As a diagnostic, m

should be large enough that nc = 0 for some c. If not, then increase m.)
The Gibbs sampler cycles through the four distributions in (6.3). We comment briefly

on each in turn. Omitted details can be found in Appendix E.
The distribution for zi = c ∈ {1, . . . ,m} is categorical, where the category probabilities

are given by

p(zi = c|β1:n, v, θ) ∝ vc f(βi|θc), for c = 1, . . . ,m. (6.4)

The cluster parameters, θc|Bc, are updated as in a finite mixture model, with the parameters
for the unoccupied components (for which nc = 0) sampled directly from the prior p(θc).

The weights v can be updated by updating the stick-breaking weights u via

uc|z1:n ∼ Beta
(
1 + nc, η +

∑m
c′=c+1 nc′

)
for c = 1, . . . ,m− 1. (6.5)

(Recall um = 1.) Finally, regarding the concentration parameter η, refer to Appendix E.

Step 2. We now turn to (6.2b).
We have

p(βi|Y1:n, ψ, z1:n) = p(βi|Yi, θi) ∝ p(Yi|βi) f(βi|θi), (6.6)

where θi is shorthand notation for θzi . These draws may be made using the Metropolis–
Hastings scheme. See Appendix E for details on how to make draws in this case and other
cases where the likelihood does not factor.

Posterior distributions. Given draws
{

(β
(r)
1:n, ψ

(r))
}R
r=1

from the posterior distribution,
we can compute approximate posterior distributions for the generic and specific cases.
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The generic distribution can be approximated via

p(βn+1|Y1:n) =

∫
p(βn+1|ψ) p(ψ|Y1:n) dψ

≈ 1

R

R∑
r=1

p(βn+1|ψ(r))

≈ 1

R

R∑
r=1

m∑
c=1

v(r)
c f

(
βn+1|θ(r)

c

)
,

(6.7)

where the choice of m is described in Step 1 above. In (6.7) the weight on the point mass is

π̂ =
1

R

R∑
r=1

m∑
c=1

v(r)
c w(r)

c (6.8)

and the density component is

1
R

∑R
r=1

∑m
c=1 v

(r)
c (1− w(r)

c )Beta(βn+1|j(r)
c , k

(r)
c − j(r)

c + 1)

1− π̂
. (6.9)

Turning to specific distributions, an approximation of the posterior distribution for the

i-th specific case can be obtained from a histogram of the draws {β(r)
i }Rr=1. A lower-variance

approximation can be computed as follows (via Rao–Blackwellization):

p(βi|Y1:n) =

∫
p(βi|Yi, θi) p(θi|Y1:n) dθi ≈

1

R

R∑
r=1

p(βi|Yi, θ(r)
i ). (6.10)

Note that (6.10) assumes the likelihood factors as in (2.6). For the case where the likelihood
does not factor see Appendix D [which see also for an explicit representation of p(βi|Yi, θi)].

7. Empirical section [incomplete]

In this section, we compute the predictive distributions. But first we discuss some odds
and ends.

Comment on robustness. An earlier version of this paper adopted a different prior and
obtained very similar results. That prior can be expressed within the framework of Section 4
as follows. The kernel involves a truncated normal distribution:

f(βi|θc) =

{
wc βi = 1

(1− wc)N[0,1](βi|µc, σ2
c ) βi < 1.

(7.1)

The prior distribution p(µc, σc) is defined in terms of (mc, sc), the mean and standard
deviation of the truncated distribution. The variables (mc, sc) are given a flat prior over the
finite region of their support. (These specifications for the kernel and the base distribution
produce a prior predictive distribution for βi that is relatively flat over the unit interval.)
The concentration parameter is set to zero (α = 0), producing complete sharing. This prior
allows for learning but imposes unimodality on the posterior predictive distributions. As it
turns out, this restriction does not materially affect the results.
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Nevertheless we now choose to adopt the more flexible approach described in Section 4
(in which α > 0 is allowed). The reason for changing the kernel (from truncated normal
to beta) is related in part to numerical issues. From a pratical standpoint the prior on
the truncated normal is difficult to use because the transformation from (mc, sc) to (µc, σc)
is numerically unstable for some important regions of the parameter space. Anyone who
wishes to replicate our results will find the current prior much easier to work with.

Posterior distributions with independent likelihoods. Here we present the results
given independent likelihoods.

Let ξ = 1/200 (so the prior mean for kc is 200), and let ζ = 2 and φ = 1/2 (so the prior
distribution for wc is uniform). See Figures 6, 7, and 8 and Table 6.

Figure 6 shows the generic distributions computed from each of the three groups (LT,
Euro 1, and Euro 2). They are remarkably similar to each other. Recall that the LT group
is composed of two series each with 189 observations, while the Euro 2 group is composed
of ten series each with 14 observations. The similarities in posterior densities and the
point-mass probabilities indicate that the information about the auto-regressive coefficient
in the two groups is similar. The generic distribution based on Euro 1 (composed of ten
series with 42 observations) appears to contain more information than either of the other
two (the density is more peaked and the point-mass is less probable), but is otherwise
consistent them. These results suggest that it is sensible to aggregate all three into one
large group of 22 series. The generic distribution based on this group (All) is shown in the
figure are well.

Figure 7 shows 95% highest posterior density (HPD) intervals for the density component
for each of the 22 specific distributions. For each specific distribution, there are three
HPD intervals shown that differ according to what information from other regimes was
used in the prior. As a baseline, the first HPD interval is computed from the truncated
Student t distribution for the given regime without regard to any other regime. The second
interval is computed based on the regime’s group, and the third interval is computed using
information from all regimes. Comparing the second and third intervals to the first, one
sees a substantial amount of shrinkage.

The posterior probabilities for a unit root are shown in Figure 8 and displayed in Table 6.
Regime 2 is special, in that the probability of a unit root Alone is sufficiently small that it
is difficult to assess the change in probability due to adding information from other regimes
(at the resolutions in the figure and the table). In all but one of the other regimes (regime
15), the probability of a unit root decreases when adding the group information. Further
reduction occurs in all regimes (still excluding regime 2) when the posterior is based on
All.

An additional comment is in order. In Section 3 we noted that for three exchange rates
there can exist no prior that provides evidence against a unit root. Yet we see that one of
these (regime 14) has a posterior probability of a unit root less that 1/2. To understand
this result, refer to (4.4). Relative to the prior p(βi|Y −i1:n), these exchange rates provide
evidence in favor of a unit root; but this prior — which is computed from all other data
— has a probability of a unit root that is substantially less than 1/2. This case illustrates
what can happen on the journey from an open-minded prior, p(βi|β−i1:n), to a well-informed

prior, p(βi|Y −i1:n).
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Figure 6. Generic posterior distributions by group. Posterior probability
of a unit root is indicated in the legend.

Results using dependent likelihoods. [This subsection is incomplete.]
Here we present some results using the SUR likelihood. We have had some difficulty

estimating the model for Euro 2 and consequently we report result for LT and Euro 1.
Compare Figure ?? with Figure 6. The only noticeable difference is that the probability of
a unit root has increased from 0.21 to 0.27. Indeed, for the LT data a 90% HPD interval
for the correlation coefficient is about [−0.05, 0.19].

Appendix A. Sufficient statistics for βi

In this section, we derive the sufficient statistics for the marginal likelihood for βi
[see (2.5)]. For this purpose it is convenient to adopt the following notation:

Y = Xξ + ε, (A.1)

where Y is T × 1, X is T × K, ξ is K × 1, and ε is T × 1. Let

ε ∼ N(0, σ2IT ), (A.2)

so that (suppressing X from the notation on the left-hand side)

p(Y |ξ, σ2) = N(Y |Xξ, σ2IT ). (A.3)

Assume p(ξ, σ2) = p(ξ) p(σ2) and let the prior for σ2 be given by

p(σ2) ∝
(

1

σ2

)(a0/2)+1

exp

(
−(b0/2)

σ2

)
, (A.4)

where a0 ≥ 0 and b0 ≥ 0. If a0 > 0 and b0 > 0 then

p(σ2) = Inv-Gamma(σ2|a0/2, b0/2). (A.5)

Otherwise the prior is improper. If a0 = b0 = 0, then p(σ2) ∝ 1/σ2.
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Figure 7. 95% highest posterior density intervals for specific cases: indi-
vidually (from truncated Student t distributions), by group, and all together.
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Figure 8. Posterior probabilities of a unit root for each specific case: indi-
vidually (from truncated Student t distributions), by group, and all together.
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Table 6. Unit root probabilites for specific cases (rounded to two decimals).

Individually By Group All Together
LT 1 US 0.11 0.07 0.01

2 FR 0.00 0.00 0.00
Euro 1 3 AT 0.92 0.78 0.68

4 BE 0.12 0.02 0.01
5 FI 0.37 0.04 0.03
6 FR 0.18 0.02 0.01
7 GR 0.48 0.06 0.03
8 IE 0.45 0.05 0.03
9 IT 0.51 0.06 0.04

10 NL 0.46 0.05 0.03
11 PT 0.24 0.04 0.02
12 ES 0.40 0.04 0.03

Euro 2 13 AT 0.94 0.85 0.58
14 BE 0.85 0.42 0.27
15 FI 0.33 0.10 0.05
16 FR 0.56 0.16 0.08
17 GR 0.34 0.04 0.01
18 IE 0.13 0.03 0.01
19 IT 0.18 0.01 0.01
20 NL 0.47 0.09 0.04
21 PT 0.06 0.01 0.00
22 ES 0.24 0.02 0.01
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Figure 9. Generic posterior distributions by group using SUR likelihood
compared with generic distributions using independent likelihoods. Posterior
probability of a unit root is indicated in the legend.
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Figure 10. Specific posterior distributions by group using SUR likelihood
compared with generic distributions using independent likelihoods.
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Figure 11. Specific posterior unit-root probabilities by group using SUR
likelihood compared with generic distributions using independent likeli-
hoods.
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The marginal likelihood for ξ is given by

p(Y |ξ) =

∫ ∞
0

p(Y |ξ, σ2) p(σ2) dσ2 ∝ Student(ξ|ξ̂, Σ̂, ν), (A.6)

where

ξ̂ = (X>X)−1X>Y (A.7)

Σ̂ = σ̂2 (X>X)−1 (A.8)

ν = a0 + T − K, (A.9)

and where

σ̂2 =
b0 + (Y −X ξ̂)>(Y −X ξ̂)

ν
. (A.10)

Assume p(ξ) = p(ξ−j) p(ξj) and let p(ξ−j) ∝ 1. The marginal likelihood for ξj follows
immediately:

p(Y |ξj) = Student(ξj |ξ̂j , Σ̂jj , ν). (A.11)

In passing, note the conditional posterior distribution for σ2 is

p(σ2|Y, ξ) = Inv-Gamma(σ2|a/2, b/2), (A.12)

where

a = a0 + T (A.13)

b = b0 + (Y −X ξ)>(Y −X ξ). (A.14)

Let us apply this framework to (2.5). In this case ξ = (αi, βi)
> so that K = 2. In

addition, T = Ti − 1. Therefore,

mi = ξ̂2 and s2
i = Σ̂22. (A.15)

In addition, if a0 = 0, then νi = Ti − 3.

Appendix B. Technical remarks regarding the prior in Section 3

[This section is incomplete.]
Here we discuss a number of technical details regarding the prior presented in Section 3.

Data frequency. Our data are of annual frequency and the priors we discuss apply to the
AR coefficients of such data. For some other frequency of observations (such as monthly),
the AR coefficient would require that the prior be transformed.

For example, let ρi = β
1/12
i . Then

p(ρi) = 12 ρ11
i p(βi)|βi=ρ12i . (B.1)

If, in addition, p(βi) = Beta(βi|1, 1), then

p(ρi) = Beta(ρi|12, 1). (B.2)

See Appendix H for how this prior (and others) can be incorporated into our framework.
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Half-lives. The half-life in years is related to the AR coefficient by λi = log(1/2)/ log(βi).
Note that

p(λi) = log(2) 2−1/λi λ−2
i p(βi)|βi=2−1/λi . (B.3)

If p(βi) = Beta(βi|1, 1), then p(λi) = 2−1/λi log(2)/λ2
i .

Also, if ρi = β
1/12
i , then λi =

(
log(1/2)/ log(ρi)

)
/12.

Previous Bayesian approaches to unit roots and PPP. There have some previous
uses of Bayesian inference. For example, see DeJong and Whiteman (1991) and Schotman
and van Dijk (1991).

Prior for intercept: Schotman and van Dijk. The “meaning” of αi depends on
whether βi < 1 or βi = 1. Note that if βi < 1 then αi = (1− βi)µi where µi = E[yit]. On
the other hand, if βi = 1 then αi = E[∆yit]. Here is what SvD say (using our notation) [p.
205]:

If βi = 1, the interpretation of the constant term changes. For βi < 1,
the constant term conveys information about the mean of Yi; for βi = 1, it
determines the drift of Yi. To exclude a random walk with drift under the
null, when a trend is not present under the alternative, the parameter αi
should shrink to zero if βi → 1. Such a restriction must be incorporated in
the prior.

Schotman and van Dijk (1991, SvD) consider (among other things) the model character-
ized by (2.3) and (2.4). They wish to rule out a priori the possibility of αi 6= 0 ∧ βi = 1.

SvD are interested in testing the joint restriction

αi = 0 ∧ βi = 1. (B.4)

SvD choose to model in terms of µi rather than αi. The likelihood can be expressed in
terms of µi:

p(Yi|µi, βi, σi) = p(Yi|αi, βi, σi)|αi=(1−βi)µi . (B.5)

SvD observe that limβi→1 (1− βi)µi = 0. In their view, the prior for µi should enforce the
implication βi = 1 =⇒ αi = 0, in which case a test of βi = 1 amounts to a test of the
joint restriction (B.4). In addition, SvD argue the prior uncertainty for µi should increase
to infinity as βi → 1. They propose a prior that embodies both of these features.

Here is their prior for µi:

p(µi|βi, σi) = N

(
µi

∣∣∣ yi1, σ2
i

1− β2
i

)
. (B.6)

Changing variables, we obtain the equivalent prior for α:

p(αi|βi, σi) = N

(
αi

∣∣∣ (1− βi) yi1, σ2
i

(
1− βi
1 + βi

))
. (B.7)

The dependence in prior for µi on βi is a two-way street in the following sense: Information
about µi will affect the marginal likelihood for βi. Let yi = 1

T

∑Ti
t=1 yit be the sample

mean. Referring to (B.6), we see the extent to which yi1 6= yi, there will be pressure
on βi to increase toward one in order to make the variance for the prior for µi larger to
accommodate the divergence.
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Simulation. In order to illustrate the effect of the SvD prior relative to our prior, we ran
a simulation. (We drop the dependence on i here.) We generated the data Y (r) for each
simulation r as follows. We set µ = 0, σ = 1, and T = 31, and we let β ∼ Uniform(0, 1). We

adopted the prior p(β, σ) ∝ 1/σ for (β, σ) ∈ [0, 1]× [0,∞). We ran 104 simulations of Y (r)

and computed the marginal posterior distribution p(β|Y (r),Mj) for each simulation using
our prior p(α) ∝ 1 (for j = 1) and (B.7) (for j = 2). We summarize the effects of the two

priors for α via z
(r)
j := p(β = 1|Y (r),Mj). See Figures 12 and 13. Figure 14 shows how

often the Bayes factor prefers M2 to M1 as a function of β.
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Figure 14. Fraction of times Bayes factor favors M2 over M1 as a function β.

Appendix C. A small amount of measure theory

This appendix contains a brief discussion of the representation of densities involving
mutually singular measures. The material here is taken from Gottardo and Raftery (2008),
which see for more detail.

Let the dominating measure be ν = δ1 + λ, where δ1 is the Dirac mass at one and λ is
one-dimensional Lebesgue measure. The measures δ1 and λ are mutually singular. Partition
the closed unit interval into [0, 1] = [0, 1)∪{1}. Note ν([0, 1]) = δ1([0, 1])+λ([0, 1]) = 2 since
δ1([0, 1]) = δ1([0, 1)) + δ1({1}) = 0 + 1 = 1 and λ([0, 1]) = λ([0, 1)) + λ({1}) = 1 + 0 = 1.

Consider the measure µ = w δ1 +(1−w)λ where w ∈ [0, 1]. Then µ([0, 1]) = w δ1([0, 1])+

(1−w)λ([0, 1]) = 1. The density of µ with respect to ν is dµ
dν (x) = w 1{1}(x)+(1−w) 1[0,1)(x),

where

1A(x) =

{
1 x ∈ A
0 x 6∈ A

. (C.1)

More generally, we can write a density with respect to ν as

dΠ

d(δ1 + λ)
(x) = w

dΠ1

dδ1
(x) 1{1}(x) + (1− w)

dΠ2

dλ
(x) 1[0,1)(x), (C.2)

or equivalently as

π(x) = w π1(x) 1{1}(x) + (1− w)π2(x) 1[0,1)(x), (C.3)

where π1(x) is a density with respect to the Dirac mass at one and π2(x) is a density with
respect to Lebesgue measure.

Thus we can express (5.1) as

f(βi|θc) = wc 1{1}(βi) + (1− wc)Beta(βi|ac, bc) 1[0,1)(βi). (C.4)
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Equation (C.4) is a density with respect to the dominating measure δ1 +λ over the sets {1}
and [0, 1), where δ1 denotes a Dirac mass located at 1 and λ denotes Lebesgue measure.

Appendix D. More on the posterior for the specific case

The posterior distribution for the specific case is conveniently expressed in terms of θ1:n:

p(βi|Y1:n) =

∫
p(β1:n|Y1:n) dβ−i1:n

=

∫ (∫
p(β1:n|Y1:n, θ1:n) p(θ1:n|Y1:n) dθ1:n

)
dβ−i1:n

=

∫∫
p(βi|Y1:n, β

−i
1:n, θ1:n) p(β−i1:n, θ1:n|Y1:n) dθ1:n dβ

−i
1:n,

(D.1)

where15

p(βi|Y1:n, β
−i
1:n, θ1:n) =

p(Y1:n|βi, β−i1:n) p(βi|θi)∫
p(Y1:n|βi, β−i1:n) p(βi|θi) dβi

. (D.2)

If the likelihood factors then

p(βi|Y1:n, β
−i
1:n, θ1:n) =

p(Yi|βi) p(βi|θi)∫
p(Yi|βi) p(βi|θi) dβi

= p(βi|Yi, θi), (D.3)

and consequently

p(βi|Y1:n) =

∫
p(βi|Yi, θi) p(θi|Y1:n) dθi. (D.4)

Here is an explicit expression for p(βi|Yi, θi). The posterior distribution for βi conditional
on θi is given by

p(βi|Yi, θi) =
p(Yi|βi) f(βi|θi)∫
p(Yi|βi) f(βi|θi) dβi

=

w
′
i βi = 1

(1− w′i)
(
p(Yi|βi)Beta(βi|ai, bi)

p(Yi|ai, bi)

)
βi < 1

,

(D.5)

where the posterior probability of a unit root is

w′i =
wi hi

wi hi + (1− wi) p(Yi|ai, bi)
(D.6)

and p(Yi|ai, bi) =
∫
p(Yi|βi)Beta(βi|ai, bi) dβi [as in (3.19)] and hi = p(Yi|βi = 1).

Appendix E. Details regarding the sampler

Here we provide details for the Gibbs sampler outlined in Section 6.

15See Appendix F for a related expression in the case of a seemingly unrelated regressions (SUR) setting.
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Step 1: Drawing θ. We address how to draw θc given Bc, where (recall)

Bc = {βi ∈ β1:n : zi = c}, (E.1)

and where nc = |Bc| is the number of elements in cluster c. Within cluster c, let

Sc = {βi ∈ Bc : βi < 1}, (E.2)

and sc = |Sc|. Note nc − sc is the number of unit roots in cluster c.
First, the draw of wc|Bc is straightforward because the likelihood for wc|Bc is binomial:

wc|Bc ∼ Beta
(
ζ φ+ (nc − sc), ζ (1− φ) + sc

)
. (E.3)

If nc = sc = 0, then this amounts to a draw from the prior.
We now turn to the draw of (jc, kc)|Bc. If nc = 0, then simply draw (jc, kc) from its

prior. Otherwise, note that

p(jc, kc|Bc) ∝ p(Sc|jc, kc) p(jc, kc). (E.4)

Here is one possible Metropolis–Hastings scheme: Let the proposal be given by

k′c − 1 ∼ Poisson(kc) (E.5)

j′c − 1 ∼ Binomial(k′c − 1, β
c
), (E.6)

where β
c

is the sample mean of those βi in Sc. Consequently, the proposal density is

q
(
(j′c, k

′
c)|(jc, kc)

)
= Binomial(j′c − 1|k′c − 1, β

c
)Poisson(k′c − 1|kc). (E.7)

Letting (jc, kc) stand for (j
(r−1)
c , k

(r−1)
c ), the acceptance rule is

(j(r)
c , k(r)

c ) =

{
(j′c, k

′
c) M≥ u(r)

(jc, kc) otherwise
, (E.8)

where u(r) ∼ Uniform(0, 1) and

M =
p(Sc|j′c, k′c) p(j′c, k′c)
p(Sc|jc, kc) p(jc, kc)

×
q
(
(jc, kc)|(j′c, k′c)

)
q
(
(j′c, k

′
c)|(jc, kc)

) . (E.9)

Step 1: Drawing η. Note that

p(η|z1:n) ∝ p(z1:n|η) p(η). (E.10)

Recall p(η) is given in (4.12). The likelihood for η is given by

p(z1:n|η) = p(z1|η)

n−1∏
i=1

p(zi+1|z1:i, η) ∝ ηd Γ(η)

Γ(n+ η)
, (E.11)

where d is the number of occupied clusters (i.e., clusters for which nc > 0).16

Draws of η can be made using a Metropolis–Hastings scheme.17 Let the proposal be

η′ ∼ LogLogistic(η(r), h), (E.12)

16The sampling distribution p(zi+1|z1:i, η) can be obtained from the Chinese Restaurant Process.
17Alternatively, draws of η can be made using a Metropolis scheme. Make a random-walk proposal of

λ′ ∼ N(λ(r), s2), where λ(r) = η(r)/(1 + η(r)) and s2 is a suitable scale. Then evaluate the likelihood ratio

for η′ = λ′/(1− λ′) relative to η(r) to determine whether or not to accept the proposal η′.
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where18

LogLogistic(x|m,h) =
hxh−1mh

(xh +mh)2
. (E.13)

Note that η ∼ LogLogistic(1, 1). The inverse-CDF method can be used to make draws from

LogLogistic(m,h): Draw u ∼ Uniform(0, 1) and set x = m
(
u/(1 − u)

)1/h
. For determining

whether or not to accept the proposal, we require the “Hastings ratio,”

LogLogistic(η(r)|η′, h)

LogLogistic(η′|η(r), h)
=

η′

η(r)
. (E.14)

Step 2: Drawing β1:n. The draws of βi|Y1:n, θ1:n and βj |Y1:n, θ1:n are independent. (Re-
call θi = θzi .) In particular,

p(βi|Y1:n, θ1:n) = p(βi|Yi, θi) ∝ p(Yi|βi) f(βi|θi). (E.15)

The draws of βi involve both a point mass at one and a density with respect to Lebesgue
measure over the unit interval. To account for these mutually singular measures in the
sampler, we adopt the framework of Gottardo and Raftery (2008). The proposal density
has the following form:

q(βi, β
′
i) =

{
γ1 1{1}(β

′
i) + (1− γ1) q∗(βi, β

′
i) 1[0,1)(β

′
i) βi = 1

γ0 1{1}(β
′
i) + (1− γ0) q∗(βi, β

′
i) 1[0,1)(β

′
i) βi < 1

(E.16)

where γ` is the probability of proposing a move to {1} from component ` and q∗(βi, β
′
i) is

the proposal when β′i < 1. The Metropolis–Hastings sampling scheme is characterized by

β
(r+1)
i =

{
β′i M(r)

i ≥ u(r+1)

β
(r)
i otherwise

, (E.17)

where u(r+1) ∼ Uniform(0, 1) and

M(r)
i =

p(Yi|β′i) f(β′i|θi)
p(Yi|β(r)

i ) f(β
(r)
i |θi)

q(β′i, β
(r)
i )

q(β
(r)
i , β′i)

. (E.18)

We choose

q(βi, β
′
i) = f(β′i|θi), (E.19)

in which case

M(r)
i =

p(Yi|β′i)
p(Yi|β(r)

i )
. (E.20)

18If x ∼ LogLogistic(m,h), then log(x) ∼ Logistic(log(m), 1/h).
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Appendix F. SUR likelihood

Thus far we have assumed that the noisy signals are independent (in the sense that the
likelihood factors). But if they are not, the the actual amount of information in the joint
likelihood about the unobserved coefficients may be more or less that what has been tacitly
assumed and the implicit density may not properly represent the underlying signals. In
this section, we allow for dependence between εit and εjt, adopting an SUR setting for the
likelihood.

Refer to (2.3) for a description of the data-generating process. Within each of our three
groups of data, it is reasonable to take into account any contemporaneous correlation across
the series innovations. Possible dependency is modeled using the seemingly unrelated re-
gression (SUR) model.19 It is convenient to express (2.3) as

yit = x>itξi + εit, (F.1)

where xit = (1, yi,t−1) and ξi = (αi, βi). Let y·t = (y1t, . . . , ynt)
>, ξ = (ξ>1 , . . . , ξ

>
n )>,

ε·t = (ε1t, . . . , εnt)
>, and

X·t =


x>1t 0 · · · 0
0 x>2t · · · 0
...

...
. . .

...
0 0 · · · x>nt

 . (F.2)

Then the data-generating process can be expressed as

y·t = X·t ξ + ε·t where ε·t
iid∼ N(0n,Σ), (F.3)

where Σ is an n× n covariance matrix with

Σij =

{
σ2
i i = j

σi σj ρij i 6= j
(F.4)

where −1 < ρij < 1.
Given (F.3), the SUR-based likelihood can be expressed as

p(Y1:n|ξ,Σ) = p({y·t}Tt=p+1|{y·t}
p
t=1, ξ,Σ)

=

T∏
t=p+1

N(y·t|X·t ξ,Σ)

∝ 1

|Σ|(T−p)/2
exp

−1

2

T∑
t=p+1

(y·t −X·t ξ)>Σ−1(y·t −X·t ξ)

 ,

(F.5)

where p is the order of the AR process; in our case, p = 1. The dependence in the data-
generating process is captured by the off-diagonal elements in Σ.20 The Bayesian SUR
model is completed by specifying prior distributions for ξ and Σ. Given ξ ∼ N(ξ0,Ξ0) and

19We adopt the approach in Greenberg (2013, pp. 169–172), which see for omitted details and references.
20Specifying Σ to be diagonal (i.e., ρij = 0 for all i and j) delivers independent likelihoods.
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Σ−1 ∼ Wishart(ν0, R0), the posterior distribution of (ξ,Σ) is characterized the a pair of
conditional distributions:

ξ|y,Σ ∼ N(ξ,Ξ1) and Σ−1|y, ξ ∼Wishart(ν1, R1), (F.6)

where

Ξ1 =

(
Ξ−1

0 +
∑
t

X>·t Σ−1X·t

)−1

(F.7a)

ξ = Ξ1

(
Ξ−1

0 ξ0 +
∑
t

X>·t Σ−1y·t

)
(F.7b)

ν1 = ν0 + (T − p) (F.7c)

R1 =

(
R−1

0 +
∑
t

(y·t −X·tξ) (y·t −X·tξ)>
)−1

. (F.7d)

We adopt an uninformative (Jeffreys) prior (Ξ−1
0 = 0, R−1

0 = 0, and ν0 = 0).21,22,23

Sampler. We modify the sampler presented in Section 6 and Appendix E. Only Step 2 is
changed. Instead of having analytically integrated out α1:n and Σ, we integrate them out
numerically via the sampler. The draws of Σ−1 are made according to (F.6). For α1:n we
have

α1:n|Y1:n, β1:n,Σ ∼ N(ξ
α
,Ξα1 ), (F.8)

where (ξ
α
,Ξα1 ) are the appropriate conditioning parameters computed from (ξ,Ξ1). Finally,

we make draws of βi for i = 1, . . . , n as described in Appendix E with the exception
that (E.20) is replaced with

M(r)
i =

p(Y1:n|α1:n, β
′
i, β
−i
1:n,Σ)

p(Y1:n|α1:n, β
(r)
i , β−i1:n,Σ)

, (F.9)

where the likelihoods are computed using (F.5) and (α1:n, β
−i
1:n,Σ) have the appropriate

values.

Rao-Blackwellizing specific cases. The conditional likelihood for βi can be expressed
as

p(Y1:n|α1:n, βi, β
−i
1:n,Σ) ∝ N(βi|mi, vi) (F.10)

21For n = 1, this prior reduces to p(σ2
1) ∝ σ−2

1 which is equivalent to p(σ1) ∝ σ−1
1 , the prior adopted in

the independent likelihoods case.
22In order to compute the Bayes factor for the SUR-based model with the independent likelihoods model

we would need an informed prior for (the off-diagonal elements of) Σ. Thus we are not able to make inferences
regarding which model is more likely.

23With Ξ−1
0 = 0, the value for ξ0 is irrelevant.
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for some mi and vi that depend on (Y1:n, α1:n, β
−i
1:n,Σ). Let θi = θzi and define

Zi =

∫ 1

0
N(βi|mi, vi) f(βi|θi) dβi

= wiN(βi = 1|mi, vi) + (1− wi)
∫ 1

0
N(βi|mi, vi)Beta(βi|ai, bi) dβi.

(F.11)

Then the conditional posterior distribution for βi is

p(βi|Y1:n, α1:n, β
−i
1:n,Σ, θi) = N(βi|mi, vi) f(βi|θi)/Zi

=

{
wiN(βi = 1|mi, vi)/Zi βi = 1

(1− wi)N(βi|mi, vi)Beta(βi|ai, bi)/Zi βi < 1
.

(F.12)

The marginal posterior for βi is obtained via integration involving p(α1:n, β
−i
1:n,Σ, θi|Y1:n),

which can be approximated using draws from the posterior:

1

R

R∑
r=1

p(βi|Y1:n, α
(r)
1:n, (β

−i
1:n)(r),Σ(r), θ

(r)
i ). (F.13)

Consequently, the probability of a unit root for the specific case is approximated by

π̂i =
1

R

R∑
r=1

w
(r)
i N(βi = 1|m(r)

i , v
(r)
i )

Z
(r)
i

(F.14)

and the corresponding density over the unit interval is approximated by

1

(1− π̂i)R

R∑
r=1

(1− w(r)
i )N(βi|m(r)

i , v
(r)
i )Beta(βi|a(r)

i , b
(r)
i )

Z
(r)
i

, (F.15)

where Z
(r)
i is given by Zi in (F.11) with the parameters (ai, bi, wi,mi, vi) replaced by

(a
(r)
i , b

(r)
i , w

(r)
i ,m

(r)
i , v

(r)
i ).

Appendix G. Residual factor structure

In this section we model a residual factor structure. We follow Jones and Shanken (2005)
who rely on Geweke and Zhou (1996).

Let G = (g2, . . . , gT ) be a common factor. We begin by conditioning on G. Let

yit = αi + βi yi,t−1 + δi gt + εit, (G.1)

where

εit ∼ N(0, σ2
i ). (G.2)

Let φi = (αi, δi, σ
2
i ). Then

p(Yi|G, βi, φi) =

T∏
t=2

p(yit|yi,t−1, gt, βi, φi), (G.3)

where

p(yit|yi,t−1, gt, βi, φi) = N(yit|αi + βi yi,t−1 + δi gt, σ
2
i ). (G.4)
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Integrating out φi, where p(φi) ∝ 1/σ2
i , the marginal likelihood for βi conditional on G is

given by

p(Yi|G, βi) = Student(βi|miG, s
2
iG, νiG). (G.5)

The parameters (miG, s
2
iG, νiG) depend only on Yi and G; they can be computed following

the steps discussed in Appendix A.

We now treat G as a latent residual factor. Let gt
iid∼ N(0, 1) and let ξt = (ξ1t, . . . , ξnt),

where

ξit = δi gt + εit. (G.6)

Then

ξt ∼ N(0, δ δ> + Σ), (G.7)

where δ = (δ1, . . . , δn) and Σ is an n× n diagonal matrix where Σii = σ2
i .

The Gibbs sampler. Here we describe the structure of the Gibbs sampler when a latent
factor is involved. The joint posterior distribution for the unknowns is

p(β1:n, ψ, η, z1:n, φ1:n, G|Y1:n). (G.8)

This joint distribution can be characterized by the following full conditional distributions:

p(ψ, η, z1:n|Y1:n, G, β1:n, φ1:n) = p(ψ, η, z1:n|β1:n) (G.9a)

p(β1:n, φ1:n|Y1:n, G, ψ, η, z1:n) =
n∏
i=1

p(βi, φi|Yi, G, θi) (G.9b)

p(G|Y1:n, β1:n, φ1:n, ψ, η, z1:n) =

T∏
t=2

p(gt|Yt,Yt−1, β1:n, φ1:n), (G.9c)

where Yt = (y1t, . . . , ynt). The right-hand side of (G.9a) is unchanged from the case with
no latent factor and so Step 1 is unchanged. A new version of Step 2 is embodied in the
right-hand sides of (G.9b–G.9c).

Regarding (G.9b), we can factor the distribution for (βi, φi) into conditional and marginal
distributions as follows:

p(βi, φi|Yi, G, θi) = p(φi|Yi, G, βi) p(βi|Yi, G, θi). (G.10)

The marginal posterior distribution for βi conditional on G can be expressed as

p(βi|Yi, G, θi) ∝ p(Yi|βi, G) f(βi|θi), (G.11)

where the marginal likelihood for βi conditional on G is given by (G.5).24 The draws can
be made according to (E.17).

24By contrast, consider the conditional likelihood for βi, which can be expressed as

p(Yi|αi, βi, δi, σ2
i , G) ∝ N(βi|mi, vi),

where

mi =

∑T
t=2 yi,t−1 (yit − αi − δi gt)∑T

t=2 y
2
i,t−1

and vi =
σ2
i∑T

t=2 y
2
i,t−1

.

The variance vi can be extremely small, making a sampler based on this likelihood inefficient.



38 GERALD P. DWYER AND MARK FISHER

Next, we can characterize p(φi|Yi, G, βi) in terms of the following full conditional distri-
butions:

p(αi|Yi, G, βi, δi, σ2
i ), p(δi|Yi, G, αi, βi, σ2

i ), and p(σ2
i |Yi, G, αi, βi, δi). (G.12)

Note the p(σ2
i |Yi, G, αi, βi, δi) is the conditional distribution for σ2

i rather than the marginal
distribution as typically would be the case. Finally, it is straightforward to draw from (G.9c).
The details are presented below.

In summary, Step 1 is unchanged. Step 2 begins the same as before, except that the
sufficient statistics for β1:n are computed conditional on G. Then φ1:n is drawn conditional
on (β1:n, G) and finally G is drawn conditional on (β1:n, φ1:n).

Rao–Blackwellization for specific cases is based on (D.5) using p(Yi|βi, G) in place of
p(Yi|βi).

Details. In order to preserve the marginal–conditional factorization of the distribution for
(βi, φi) the draw of βi must precede the draw of φi within a given sweep and the draw of G
must not intervene.

First, for i = 1, . . . , n,

αi |Yi, βi, σi, δi, G ∼ N(m̃i, s̃
2
i ), (G.13)

where

m̃i =

∑T
t=2 yit − βi yi,t−1 − δi gt

T − 1
and s̃2

i =
σ2
i

T − 1
. (G.14)

Second,

δi |Yi, αi, βi, σi, G ∼ N(m̂i, ŝ
2
i ) (G.15)

where

m̂i =

∑T
t=2 gt (yi,t − αi − βi yi,t−1)∑T

t=2 g
2
t

and ŝ2
i =

σ2
i∑T

t=2 g
2
t

(G.16)

Third,

σ2
i |Yi, αi, βi, δi, G ∼ Inv-Gamma(ai/2, bi/2), (G.17)

where

ai = a0 + Ti − 1 and bi = b0 +

Ti∑
t=2

(
yit − αi − βi yi,t−1 − δi gt

)2
. (G.18)

Finally, for t = 2, . . . , T ,

gt | Yt,Yt−1, α, β, δ, σ ∼ N(M,S2), (G.19)

where25

M = δ>(δ δ> + Σ)−1(Yt − α− β Yt−1) and S2 = 1− δ>(δ δ> + Σ)−1δ. (G.20)

25Note (δ δ> + Σ)−1 = Σ−1 − (Σ−1δ δ>Σ−1)/(1 + δ>Σ−1δ).
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No learning. Let examine the case with the latent factor but where there is no learning.
We can use this case as a baseline for comparison. The joint posterior distribution for the
unknowns is

p(β1:n, φ1:n, G|Y1:n), (G.21)

which can be characterized by the following full conditional distributions:

p(β1:n, φ1:n|Y1:n, G) =

n∏
i=1

p(βi, φi|Yi, G) (G.22a)

p(G|Y1:n, β1:n, φ1:n) =

T∏
t=2

p(gt|Yt,Yt−1, β1:n, φ1:n). (G.22b)

Draws for φi and G are made as before. Draws of βi can be made directly from the
conditional posterior distribution:

p(βi|Yi, G) =


hGi

gGi +hGi
βi = 1

gGi
gGi +hGi

(
p(Yi|βi,G)

gGi

)
βi < 1

, (G.23)

where p(Yi|βi, G) is given in (G.5) and

gGi =

∫ 1

0
p(Yi|βi, G) dβi and hGi = p(Yi|βi = 1, G). (G.24)

Rao–Blackwellization can also be based on (G.23):

π̂i ≈
1

R

R∑
r=1

hG
(r)

i

gG
(r)

i + hG
(r)

i

(G.25)

and the density over the unit interval is approximated by

1

(1− π̂i)R

R∑
r=1

p(Yi|βi, G(r))

gG
(r)

i + hG
(r)

i

. (G.26)

Appendix H. More general prior

Here we sketch how to engineer a more general marginal prior over the unit interval (or
any interval). We generalize (5.1) as follows:

f̃(βi|ai, bi, wi) =

{
wi βi = 1

(1− wi)Beta(Υ(βi)|ai, bi) υ(βi) βi < 1
, (H.1)

where υ(x) ≥ 0,
∫∞
−∞ υ(x) dx = 1, and Υ(x) :=

∫ x
−∞ υ(t) dt. Note∫ ∞

−∞
Beta(Υ(x)|a, b) υ(x) dx = 1. (H.2)

In addition,

1

k

k∑
j=1

Beta(Υ(x)|a, b) υ(x) = υ(x), (H.3)
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and therefore the prior predictive distribution over the unit interval is

E[Beta(Υ(βi)|ac, bc) υ(βi)] = υ(βi). (H.4)

For example, υ(x) = Beta(x|ã, b̃). The prior in the body of the paper is a special case with
υ(x) = Uniform(x|0, 1) and Υ(x) = x.

Sampler. In order to accommodate the more general marginal prior displayed in (H.1), a
modification to the sampler is required. It is convenient to work directly with the trans-

formed coefficients, where β̂i = Υ(βi). This allows for the use of the sampler described

above (with β̂1:n replacing β1:n in the formulas) with a single modification to account for

the likelihood for β̂i. In particular, replace (E.20) with

M̂(r)
i =

p̂(Yi|β̂′i)
p̂(Yi|β̂(r)

i )
, (H.5)

where
p̂(Yi|β̂i) := p(Yi|βi)|βi=Υ−1(β̂i)

. (H.6)

The draws {β̂(r)
1:n}Rr=1 can be transformed via β

(r)
i = Υ−1(β̂

(r)
i ) if so desired.

Given the draws of {ψ(r)
n }Rr=1, we turn to computing the Rao–Blackwellized approxima-

tions to the generic and specific distributions. Starting with the generic case, define

ϕn+1(x) := p(β̂n+1|Y1:n)|
β̂n+1=x

for x 6= 1. (H.7)

Then for βn+1 6= 1
p(βn+1|Y1:n) = ϕn+1

(
Υ(βn+1)

)
υ(βn+1). (H.8)

Turning to the specific cases, define

ϕi(x) := p(β̂i|Y1:n)|
β̂i=x

for x 6= 1, (H.9)

where p(β̂i|Y1:n) is calculated using p̂(Yi|β̂i) in place of p(Yi|β̂i). In particular,

p̂(Yi|ai, bi) =

∫
p̂
(
Yi|β̂i) f(β̂i|ai, bi) dβ̂i. (H.10)

Then for βi 6= 1
p(βi|Y1:n) = ϕi

(
Υ(βi)

)
υ(βi). (H.11)
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