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ABSTRACT. We show how to construct models of the term structure of interest
rates in which the expectations hypothesis holds. McCulloch (1993) presents
such a model, thereby contradicting an assertion by Cox, Ingersoll, Jr., and
Ross (1981), but his example is Gaussian and falls outside the class of finite-
dimensional Markovian models. We generalize McCulloch’s model in three ways:
(i) We provide an arbitrage-free characterization of the unbiased expectations
hypothesis in terms of forward rates; (i) we extend this characterization to
a whole class of expectations hypotheses; and (ii7) we show how to construct
finite-dimensional Markovian and non-Gaussian examples.

INTRODUCTION

In one form or another, the expectations hypothesis has played a central role
in the analysis of the term structure of interest rates. Perhaps the most common
form of the expectations hypothesis is the so-called unbiased expectations hypoth-
esis (U-EH) that asserts that forward rates equal the conditional expectations of
future spot rates, but other forms exist as well. Cox, Ingersoll, Jr., and Ross (1981,
CIR) characterize a number of mutually incompatible forms of the expectations
hypothesis besides the U-EH, including the local expectations hypothesis (L-EH),
under which the expected rate of return on all zero-coupon bonds—on all assets, in
fact—equals the short-term risk-free rate.! Of the various expectations hypotheses
they consider, CIR claim that only the L-EH is consistent with general equilib-
rium in continuous-time models (as well as in discrete-time models with continuous
compounding of yields).

McCulloch (1993) provides a counter-example to CIR’s claim. His example is in
the spirit of Heath, Jarrow, and Morton (1992, HJM), in the sense that it does not
admit a representation in terms of a finite number of Markovian state variables, the
setting in CIR. Indeed, McCulloch suggests that CIR’s claim may be true within
their setting. As we show, it is not.
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There is a weak version of the U-EH according to which forward rates are biased
predictors of future spot rates, but the bias, or term premium, is a constant that
only depends on the forecast horizon. A regression of future spot rates on current
forward rates produces a slope coefficient equal to unity under both versions, but
the intercept, which equals zero under the strong version, is unrestricted under the
weak version.? To construct an arbitrage-free model of the yield curve in which the
weak U-EH holds, it is sufficient to let all volatilities be constant—the Gaussian
case.> By contrast, our objective is (in part) to construct models of the strong
version. In the process, we show that the U-EH does not require the Gaussian
assumption.

A statement of the central idea of the paper may be useful at this point, because
technical details sometimes stand in the way of the intuition. The difference between
a forward rate and the expected future short rate at the corresponding horizon is
the sum of a risk premium and a Jensen inequality term, also called a convexity
premium. For the U-EH—or any other version of the expectations hypothesis—to
hold, these two premia must balance each other in just the right way at all horizons.
To choreograph the steps that each term is allowed to take, we introduce a vector-
valued function ¢(t,T'), where ¢ is the current time and T is the maturity date (so
that 7 := T — t is the horizon); this function involves both the market price of risk
and bond price volatility. As long as, for any fixed ¢, ¢(¢,T") lies on a sphere, the
balance between the risk and the convexity premia is achieved and the expectations
hypothesis holds. If, in addition, the orbit of ¢(¢,t + 7) is a circle on the sphere
around which ¢(¢,t+7), considered as a function of 7, proceeds at a constant speed,
then the model is Markovian.

We start in Section I with an example of a general-equilibrium production econ-
omy that fits in the class analyzed in CIR (1985). In this economy, although the
U-EH holds, the fact is not obvious. The remainder of the paper is devoted to
showing what makes this example work and how to construct others. In Section II,
we generalize McCulloch’s example by putting the U-EH explicitly into the HJM
framework, focusing on absence-of-arbitrage conditions rather than building from a
general equilibrium model. Then, in Section III, we extend the analysis to a class
of expectations hypotheses that includes as special cases those considered by CIR
(1981). Finally, in Section IV, we provide a method to construct examples in which
there is a finite-dimensional Markov state vector (so-called factor models). We show
that there exists only one two-factor model that is Gaussian. But, as we also show,
there exist many other models that have either random volatilities or more than
two factors, and we provide some examples. Some of these models are members of
the exponential-affine class of term structure models characterized by Duffie and

Kan (1993).

2Campbell and Shiller (1991), for example, test, and reject, the weak version of the U-EH.
3See Campbell (1986) for a general-equilibrium example.
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1. A GENERAL-EQUILIBRIUM EXAMPLE OF THE U-EH

In the setting analyzed in CIR (1985), wealth and a finite number of Markov
factors summarize the state of the economy. These factors follow continuous-time
diffusion processes. The part of wealth that is not consumed is reinvested in a finite
number of stochastic and linear technologies to provide for future consumption.
A representative consumer with initial wealth k(0) chooses the consumption and
investment plan to maximize the expected value of the flow of utility.

In our example, instantaneous utility is logarithmic and the discount rate is
constant, so that the consumer maximizes

E [ /O " et logle(t)] dt |

There are two factors, r(t) and z(t), two sources of risk represented by two ortho-
normal Brownian motions, (Wi (t), Wa(t)), and a single technology. The technology
is described by a variable n(t) which can be interpreted as the value at time ¢
of one unit of consumption invested in the technology at time 0 and continuously
reinvested. Assume that the law of motion for n(t) is
dn(t)
) (r(t) +¢* C*(t)) dt + g C(t)dWi (t).
As shown in CIR (1985), in this logarithmic economy the law of motion for marginal
utility, m(t) := exp[—pt]/c(t), is the same as that for n=!(¢). Therefore, Ito’s lemma,
implies that
dm(t)
—= = —r(t)dt — t)dWi(t).
m(t) T( ) QC( ) 1( )
In this representative-agent economy, marginal utility is the state-price deflator, so
that the short risk-free rate is 7(¢) and the market price of risk vector (one price
per source of risk) is A\(t) = (g¢(t),0).* Finally, assume that the laws of motion for
the factors are

dr(t) = z(t) dt + w C(t) dWa(t) (1.1)

and
dz(t) = y(t) dt — w? ¢(t) AWy (1), (1.2)

The processes (1.1) and (1.2) are specified in greater generality than needed here,
because they will serve as the basis for other examples. In the present context, let
C(t) :==z and y(t) := (F — r(t)), and let ¢, z, w, and 7 be constant.

It may not be obvious, but the U-EH holds in this economy when ¢ = 1. Rather
than proving this statement for our special case only, we conduct a general analysis
of various versions of the expectations hypothesis, including the U-EH. This analysis
begins within the framework of Heath, Jarrow, and Morton (1992), which does not
involve Markov factors and focuses on the conditions for absence of arbitrage rather
than on those for equilibrium. After obtaining a criterion for the expectations
hypothesis in a model of the HJIM type, we focus on the conditions that such a

4See Duffie (1996) for a discussion of the state-price deflator and its relationship to marginal utility.
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model must satisfy to admit a CIR Markov representation. Then we simply verify
that these conditions hold in the foregoing example.

2. THE U-EH IN AN HJM SETTING

In this section, we generalize McCulloch’s example by characterizing the U-EH
in terms of the HJM absence-of-arbitrage restriction. We start with some notation.
Let P(t,T) denote the price at time ¢ of a default-free zero-coupon bond that pays
one unit of account at time 7'. Assume that, at any time ¢, P(¢,T) is a differentiable
function of T, and define f(¢,T) := —% log[P(t,T)], the instantaneous forward
rate for horizon T'; this definition, of course, implies
T
log[P(t,T)] = — f(t,s)ds. (2.1)
s=t
Following CIR, define the unbiased expectations hypothesis as the proposition that
forward rates are the conditional expectation of future spot rates; that is, f(¢t,7) =
E\[r(T)], where, by definition, the short rate at time ¢ is r(¢) := limp_, f(¢,T), and
E,[-] denotes conditional expectation.

In the HJM approach to modeling the term structure, the primitives are (i) an
initial forward curve {f(0,%) | ¢ > 0}, (4i) the process for the market price of risk
A(t), and (72) the volatility of forward rates. We restrict attention to economies in
which forward rates are diffusions driven by a d-dimensional vector W (t) of standard
Brownian motions. Let the process for forward rates be

df (t,T) = pp(t, T)dt + oy (t,T)" dW (t), (2.2)

where o¢(t,T') is a d-dimensional vector of forward-rate volatilities. Note that the
market price of risk, A(t), is also a d-dimensional vector, and that it could be a
random process, as could p¢(¢,T) and o¢(t,T).

To study conditions under which the U-EH holds, we need the relationship
between future short rates and current forward rates. Since r(T) = f(T,T) =

f&,T)+ fsj;t df (s,T), we can write

T T
B = 1T+ | B = (6D + [ Bl s

Define the forward rate premium as follows:
T

VLT) = [0T) = BT = [ Bilopy(s. D] ds (2.3)
5=
Equation (2.3) clearly implies that if forward rates are unbiased predictors of future
spot rates, then forward rates are martingales: ps(¢,7) = 0. If, in addition, the
ergodic distribution of r(¢) exists and has a mean, then the average yield curve
is flat. By contrast, an upward sloping average yield curve requires an expected
decrease in forward rates on average.

It might seem easy, then, to construct examples of the U-EH by choosing processes
for forward rates (2.2) with us(¢t,7) = 0. The problem is that doing so arbitrarily
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might introduce arbitrage opportunities. The condition for absence of arbitrage in
the HJM setting specifies the drift of forward rates as®

T
prt,T) = op(t,T)" <)\(t) +/ or(t,s) ds) (2.4)

for all 0 < ¢ < T. Equation (2.4) shows that we must be able to write forward
rate drifts in terms of their volatilities and the market price of risk for bond prices
to be free of arbitrage opportunities. Since the U-EH requires forward rates to be
martingales, the HJM characterization of this hypothesis is

or(t,T)T <)\(t) + / st s) ds) 0. (2.5)

The modeling challenge, then, is to find processes {A(t), o¢(t,T")} that satisfy (2.5).
To meet this challenge, it is convenient to define
T

o(t,T) = At) —I—/ of(t,s)ds. (2.6)

s=t

=t

=t

Note that ¢/(¢,T) = o4 (t,T), where we define F'(t, T') := 5% F(t, T for any function
F(-, ). Using (2.6), we can write (2.5) as

&' (t, T) p(t, T) = 0. (2.7)

Any function ¢(t,T) that satisfies (2.7) has constant length: ||¢(t,T)|| = [|o(t, )]
Two comments are in order. First, note that when d = 1, this condition can be
satisfied only if ¢(t,T) is a constant function of its second argument, in which
case 0¢(t,T) = 0, which means there is no uncertainty. Thus in order for (2.7)
to hold when interest rates are stochastic, there must be at least two Brownians.
Second, note that (2.7) does not restrict how ¢(¢, 7)) behaves as a function of its
first argument: In particular, ¢(¢,T) can be a stochastic process.
We can restate the key relationship between ¢(t,T') and the U-EH as follows:

If ¢(t,T) is a rotation of ¢(t,t), then the U-EH is satisfied in an arbitrage-
free way.

This statement yields a simple recipe for constructing arbitrage-free models of the
U-EH: (i) choose ¢(t,T") such that ¢(t,t) is some random process and ¢(¢,T"), for
T > t, is a rotation of ¢(t,t); (i) set A\(t) = @(t,t), and (uii) set of(¢,T) = ¢/ (¢, T).

McCulloch (1993) constructs an economy in which the U-EH holds.% In McCul-
loch’s example there are two sources of risk, so that d = 2. He chooses’

st =a(V2eT e, 1)

This was first shown by HIM; see also Duffie (1996), p. 151 or Hull (1993), p. 398-401. The form
of our restriction differs from the form that Duffie and Hull give because in their presentations
wy(t,T) is risk adjusted, while here it is not.

5Frachot and Lesne (1994) note that such an example could be constructed easily by exploiting
equation (2.5).

"We reverse the order of McCulloch’s Brownian motions for comparison with what follows. Note
that a = n,/go in his notation.
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Note that ||¢(t,t + 7)|| = [|¢(t,t)|| = a. Clearly, as 7 increases, ¢(t,t + 7) turns
continuously from ¢(t,t) = (a,0)" to ¢(t,t + 00) = (0,a)’, going a quarter of
the way around the circle over the infinite horizon. Finally note that McCulloch’s
example is Gaussian since ¢(t,T') is deterministic.

3. A CLASS OF EXPECTATIONS HYPOTHESES

We now generalize the results from the previous section to encompass an entire
class of expectations hypotheses. For this purpose, we will need to refer to the
process for zero-coupon bonds:

dP(t,T) T

— = t,T)dt t,T) dW(t). 3.1
From (2.1), note the following relation between the volatility of bond prices and
that of forward rates

T
op(t,T) = — / o/ (t,s) ds. (3.2)

=t

CIR characterize four versions of the expectations hypotheses: the U-EH, the L—
EH, the Yield-to-Maturity Expectations Hypothesis (YTM-EH), and the Return-
to-Maturity Expectations Hypothesis (RTM-EH). They show that the U-EH and
the YTM-EH are identical in continuous time, and that—after imposing absence-
of-arbitrage conditions—the three independent expectations hypotheses could be
characterized in the following way:

op(t,T)TAE) = 5 llow(t, 7)), (3.3)

where

0 under L-EH,
g=41 under YTM/U-EH, and
2 under RTM-EH.

Equation (3.3) provides a characterization of the three expectations hypotheses.
Moreover, it shows that they are mutually inconsistent unless op(t,7) = 0. Al-
though CIR only consider ¢ € {0,1,2}, we allow ¢ to be an arbitrary real number,
and we refer to (3.3) as the g—expectations hypothesis (¢-EH). CIR refer to (3.3)
in making their claim that only the L-EH could hold in a continuous-time general
equilibrium model. Clearly, the L-EH has a special status, since ¢ = 0 implies
A(t) is orthogonal to op(t,T) but imposes no other restriction; with A(¢) = 0, for
example, the L-EH is always satisfied and op(t,T) is unrestricted. For any other
value of ¢, by contrast, if A(t) is orthogonal to op(t,T"), then op(t,T) = 0.

The left side of equation (3.3) is the excess expected rate of return over the next
instant of time associated with holding the discount bond maturing at 7', and it is
therefore a risk premium. With ¢ = 1, the right side is a Jensen’s equality term, or
convexity premium, that pulls the yield below the corresponding expected future
short rate. When the two terms exactly equal each other, the two premia exactly
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offset each other, and the U-EH holds. Even with ¢ # 1, the ¢—EH hypothesis
requires a balance between the two premia, although not equality.

We can recast (3.3) in terms of forward rates by differentiating both sides with
respect to T, using (3.2), and rearranging:

op(t,T)T (A(t) =

T
taf(t, s) ds) =0. (3.4)

We see that (2.5) is a special case of (3.4) with ¢ = 1. It is convenient to generalize
the definition of ¢(¢,T): Define ¢(t,T') implicitly by

A(t) = qo(t,1) (3-5)

and
or(t,T) = ¢'(¢t,T), (3.6)
so that q¢(t,T) = A(t) + qfsT:t or(t,s)ds.
Using (3.5) and (3.6), we can write (3.4) as

q¢'(t,T)" ¢(t,T) = 0. (3.7)
Equation (3.7) is satisfied automatically if ¢ = 0. If ¢ # 0, (3.7) reduces to (2.7), in
which case the comments that follow (2.7) apply here to the generalized definition
of ¢(t,T).

The recipe for constructing arbitrage-free models of the ¢—FEH is this: (i) choose
¢(t, T) such that ¢(t,t) is some random process and ¢(t,T"), for T' > ¢, is a rotation
of ¢(t,t); (i) define A(t) = q ¢(t, ), and (iii) define o4 (¢, T) = ¢'(t,T). For example,
with McCulloch’s ¢(t,T"), we could choose A(t) = q ¢(t,t) for any q.

Finally, note that we can restate the ¢—-EH in terms of either forward rate drifts

or term premia. Using (3.5) and (3.6), we can rewrite the no-arbitrage condition
(2.4) as

uitT) = ¢ (6T) ((a = D elt,t) + (1. T)).

For ¢ # 0, (3.7) implies the following characterization in terms of drifts:

st T) = (g = 1) ¢ (tT) " 6(t,1). (3.8)
In view of (2.3), this equation holds if and only if
T
VD) = (1=0) [ BT o) ds (39)

which is a characterization of the ¢—EH in terms of the term premium. In what
follows, we assume for convenience that (2.7), (3.8), and (3.9) hold even when ¢ = 0.

4. MARKOVIAN MODELS

McCulloch (1993) establishes decisively that the unbiased expectations hypoth-
esis is consistent with general equilibrium, but he leaves open the possibility that
expectations hypotheses may be inconsistent with general equilibrium in the finite-
state Markovian world analyzed by CIR. We settle this issue by exhibiting Markov
economies with two and three factors. The construction allows for the volatility of
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bond prices to be stochastic. The trick is to make ¢(t,T) proceed around a circle
at a constant pace, producing an infinite number of cycles.

In all of the examples we develop below, the processes for the short rate r(¢) and
its drift z(t) share the structure set out in (1.1) and 1.2, for various specifications
of ¢(t) and y(¢).

To facilitate the analysis of the examples, we define a pair of functions that we
will use repeatedly and for which (q,w, 7, z) is a vector of fixed parameters:

Y(r,¢) =u? (F—r+(qg—1) (2~ ¢?)

and
7 sin[w 7]

g(rx,7) =7+ (r—7) cosjwT]+ +(g—1)2* (1 = cos|w]).

A two-factor model. Consider the following example, where d = 2 and ¢(t,T)
has constant norm z and turns at constant angular velocity w:

ot t+7)=2C(w, 1), (4.1)
where
_ (cos[wT]
Clw7) = <sin[w T]) ’

We prove in Proposition 2 below that this choice for ¢(¢,T') leads to processes for
the short rate r(t) and its drift x(¢) of the form (1.1) and (1.2), where ((¢) = z and

y(t) =Y (r(t),2) = w? (7 = r(t)).
In this model of the yield curve, the bivariate process for the two factors, r(t) and
x(t), is Markovian. The short rate is stationary, with an unconditional mean equal
to 7, while its drift z(¢) is also stationary, with an unconditional mean equal to
zero; both unconditional variances are infinite. Volatilities are constant, so that the
model is Gaussian. Finally, the market price of risk is

a0 =aott) = (7).

With linear drifts, constant volatilities, and a constant price of risk, the model
belongs to the exponential-affine class introduced by Duffie and Kan (1995). The
solution for forward rates is

ft,t+7)=Fy(r(t), z(t), 7). (4.2)

At any time t, then, the forward curve is a sine wave with fixed angular frequency
w. At horizon 7 = 0, its level is r(¢) and its slope is z(t), both random variables, so
that the forward curve has random amplitude and phase shift. Using the methods
described in Fisher and Gilles (1996), it is possible to verify that the conditional
expectation of the short rate is

Er(t+ 1) = Fi(r(t), z(t), 1), (4.3)
while the conditional variance is Var,[r(t + 7)] = w? 2?7, converging linearly to
infinity, the variance of the ergodic distribution. Clearly, the conditional mean and
variance of r(t) are independent of the value of ¢, as they must be since the process

for (r(t), z(t)) is independent of g. But the value of ¢ affects the market price of
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risk, and therefore the shape of the yield curve given in (4.2). These equations,
imply that the term premium is

Pt t+7) = f(t, t+7) = Efr(t+7)] = (¢ — 1) 2* (1 — cos[w (7)),

which agrees with the term premium under the ¢—EH as given in equation (3.9).
In particular, under the unbiased expectations hypothesis (¢ = 1) all term premia
vanish.

We can now return to the general-equilibrium economy of Section 1. The market
price of risk is A(t) = ¢(z,0) while the short rate is 7(¢). The yield curve is therefore
exactly that of the example in this section, implying that the g—EH hypothesis holds
in that economy; in particular, the U-EH holds if ¢ = 1.

The example is the canonical Gaussian model. In the foregoing example,
the factors have deterministic volatilities—the Gaussian case. From an empirical
standpoint, Non-Gaussian models are more interesting, because they alone imply
that term premia fluctuate randomly. Below, we construct such examples by gen-
eralizing the canonical example.

Before turning to the issue of non-Gaussian models, however, we prove two results
about the canonical example, which clearly show that it is the natural place to start
generalizing from. First, we show that there exists no one-factor model of the g—EH,
Gaussian or not. This is simply because, under the ¢—EH, the univariate process
for the short rate cannot be Markovian (all proofs appear in the appendix).

Proposition 1. If the g—EH holds and the short rate r(t) is not deterministic, then
its univariate process is not Markovian.

Second, we show that any two-factor Gaussian model of the g—EH is a renormal-
ization of the canonical example.

Proposition 2. Suppose that the g—EH holds in a model with two Markovian state
variables such that bond prices have deterministic volatilities. Then there exist
constant scalars 7, w, and z such that, perhaps after changing the basis for the
vector of Brownian motions (thus affecting the representation of the processes, but
not the form of the yield curve):

e ¢(t,T) has the form shown in (4.1);
e the processes for the short rate and its drift have the form shown in equations
(1.1) and (1.2), with {(t) = z and y(t) = Y (r(t), 2);

e and the initial forward curve has the form
f(O,T) = Fq(T(O), I(O)v T)' (44)

Proposition 2 asserts that in a Gaussian and Markovian economy (with two fac-
tors), the ¢—-EH implies that ¢(¢,T) keeps turning around the circle at constant
angular velocity, w. It also specifies the Brownian motion driving z(t), the drift
of r(t), as orthogonal to that driving r(¢), and it specifies y(t), the drift of z(¢),
as a translation of r(¢) and independent of the value of x(t) itself. The short rate
is stationary with unconditional mean equal to 7, while its drift is also stationary
with unconditional mean equal to zero.
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Because the model is Markovian, the initial time has no particular significance,
and equation (4.4) for the initial forward curve delivers the form of the generic
forward curve, (4.2), that follows from solving a Duffie-Kan model. But while the
Duffie-Kan method requires solving a simultaneous system of three Ricatti differ-
ential equations, we obtain the initial forward curve in the proof of Proposition 2
by solving a single second-order differential equation.

Clearly, forward curves can be flat; in fact the forward curve is flat if and only
if r(t) = 7+ (¢ — 1)2% and x(t) = 0, because then F,(F + (¢ —1)22,0,7) =
7+ (g — 1) z2. The short rate and its drift have an ergodic distribution, with mean
7 and zero. Since Fj is linear in these two variables, the whole forward curve has
an ergodic distribution, and its average is obtained by setting r(t) and z(t) at their
unconditional means, # and 0:

Fy(r,0,7) =7+ (¢g—1) 22 (1 - cos|w 7).

The average forward curve is thus the same as the flat forward curve under the
U-EH (¢ = 1), but in other cases it is a sine wave.

Non-Gaussian models. We now turn to the non-Gaussian case. The simplest
way to generalize the canonical Gaussian example is to suppose that ¢(t,t)—which
is proportional to the market price of risk A\(¢)—is an Ito process. To do this without
increasing the number of factors, replace equation (4.1) by ¢(t,t+7) = ((t)C(w, T)
where ((t) is some function of r(¢) and z(¢). As shown in Proposition 3, the result
is a non-Gaussian two-factor Markov model of the yield curve in which the ¢-
EH holds. Although this approach deliver closed-form expressions for bond prices,
checking that the g-hypothesis holds may not be easy in practice, because we do
not have closed-form expressions for the conditional forecasts of the factors. For
this reason, we also introduce in Proposition 4 a non-Gaussian three-factor model,
in which we know how to compute both bond prices and conditional forecasts.

Proposition 3. Let ¢(t,t + 1) = ((t)C(w,T), where C(w,T) is as in (4.1) and
C(t) = C(r(t),z(t)), for any function ((-,-) (with the restriction that the implied
stochastic processes for r(t) and x(t) have a solution). Suppose also that (*(t) has
an unconditional mean z%. Pick a constant ¥ and initial conditions 7(0) and z(0),
and choose the following initial forward curve

f(OvT) = Fq(T(O), x(O), T)'
Then:

e the resulting yield curve model is Markovian with two factors, (r(t),z(t)), as
well as non-Gaussian if ((t) is random, and it satisfies the q-expectations
hypothesis;

e the processes for the two factors have the form shown in equations (1.1) and
(1.2), with y(t) =Y (r(t), ¢(t));

e at any time t, the forward curve is

f(t,t+7)=Fy(r(t), z(t), 7). (4.5)
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We see that bond prices are independent of ((¢) and depend on the other two
factors, r(t) and z(t), exactly as they do in the corresponding Gaussian model. The
only difference between the Gaussian and the non-Gaussian models is the distribu-
tion of these factors; therefore yield curves of a given shape do not occur with the
same frequency in both models.

In the non-Gaussian model, the drift of z(¢) depends on (?(¢) (except when ¢ = 1),
which complicates the task of making conditional forecasts. If (?(t) were a linear
function of z(t) and r(t), then the model would be in the exponential-affine class,
and we would know how to compute conditional forecasts. Unfortunately, in our
two-factor model there is no guarantee that either the interest rate or its drift can
stay positive (in fact, the mean of z(t) equals zero), and no linear combination of
these variables is guaranteed to stay positive. Therefore, (2(t) cannot be a linear
function of (r(t), z(t)). We can get around this problem by treating (?(t) as a third,
independent factor.

The following three-factor model belongs to the exponential-affine class.

Proposition 4. Set d = 3. Let ¢(t,t + 7) = ((t) C*(w, T), where C* is the modifi-
cation of the function C given in (4.1) obtained by adding a third component which
identically equals zero; let the process for (?(t) satisfy

d¢*(t) = k (2* — (*(t)) dt + ¢ (t) dW3(t),

and let f(0,7) = F,(r(0), z(0), 7), so that the initial forward curve is as in Proposi-
tion 3. Then the conclusions of Proposition (3) hold, with the obvious modification
that the state is the three-dimensional vector (r(t), z(t), C2(t)).

The bond price formulas in the two- and three-factor models are identical. The
only difference is that, because the latter model belongs to the exponential-affine
class, it is possible to obtain closed-form solutions for the first two conditional
moments of all factors. The mean of the short rate, in particular, satisfies

Eir(t+1)] = Fi(r(t), z(t), 7) +

(—g w? (Cg(t) - z2> <e_l” — cos[wT] +

k sin|wT]
k2 4+ w? '

w

Subtracting the right side from Fj;, produces the forward premium 1:

Wt t+7)=(g—1) {22(1 — coslwr]) — A (e_kT — cosfwr] + M) } ,

w

where A := w?(¢%(t) — 22)/(k® + w?). Tt can be further verified that, because
BC(+ 5 = 2+ e (07 - ),

the above expression for the term premium agrees with (3.9), which in the present
case reduces to

Yvt,t+71)=(¢— 1w /;0 Ei[C%(t + s)] sinfw(T — 5)] ds.
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5. CONCLUDING REMARKS

We have shown that the expectations hypothesis is compatible with general equi-
librium even in finite-dimensional Markovian settings. The models we have been
able to construct, however, will not help to rehabilitate the expectations hypoth-
esis. Rather, they show how implausible the hypothesis is, because our examples
all share the same process for the short rate, which implies that the forecast of
the short rate path is a sine wave with nondampening amplitude. Moreover, the
unconditional variance of the short rate is infinite, an undesirable feature from an
econometric standpoint.

In the HJM setting, yield curves and conditional moments for the short rate can
look more reasonable. The short rate in McCulloch’s example, for instance, has
finite variance, while its forecast (given by the current forward curve) can have any
shape. Note that McCulloch did not exhibit a yield curve. In fact, in the HJM
setting, the initial forward curve, which McCulloch did not specify, can be chosen
arbitrarily, although it affects the form of the yield curve for all time to come.®
The expectations hypothesis imposes restrictions only on the dynamics of the yield
curve. Given the initial forward curve and its dynamics, it is in principle possible
to reconstruct future yield curves for any path of the set of Brownian motions. But
because no finite set of variables summarizes the state of the economy, the problem
of keeping track of the whole history becomes unwieldy very quickly, and we cannot
say what a typical forward curve looks like in McCulloch’s example.

At first blush, it may seem that the models exhibited here have the potential to
represent the cyclical behavior of interest rates prior to the existence of the Federal
Reserve. Unfortunately, the models cannot be made to reasonably approximate
that sort of cyclical behavior. The problem is that the pre-Fed cycles are seasonal,
so that their phase is deterministic, while the cycles in our models are subject to
random phase shifts. In other words, there is no way to make summer (for example)
be a high-rate season on average.

As a final observation, we suspect that no equilibrium model of the expectations
hypothesis, Markovian or non-Markovian, can guarantee the non-negativity of the
short rate. This is certainly true in McCulloch’s example and all of our examples.
Such a feature makes the expectations hypothesis a poor benchmark for nominal
rates. The reason for the inability to keep the short rate positive is simple. If the
short rate is to stay positive, its volatility must be small enough and its drift must
be positive whenever its level is close to zero. But in all our examples, the drift of
the short rate is independent of the short rate itself, and therefore will not always
point in the right direction when the rate is small.

APPENDIX A. PROOFS OF PROPOSITIONS

Preliminaries. To prove the propositions, we need the process for the short rate
under the ¢—EH. In the HJM framework, the three model primitives—the initial
forward curve, the market price of risk and the volatility of forward rates—are

8Initial forward curves in our examples are determined only by the condition that the model is
Markovian, as the proofs of the propositions make clear.
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guaranteed to deliver an arbitrage-free model of the term structure. The short rate
is given by

t t

,uf(s,t)ds—i—/:Oaf(s,t)TdW(s), (A1)

rw:fwo:ﬂuw+/

s=0

where p(t,T) is given by equation (2.4). Using (3.6) and imposing the ¢-EH
condition (3.8), equation (A.1) becomes

t t
)= 0.0+ @1 [ st s 9dst [ S0 awe: ()
s=0 s=0
from which it follows that the process for the short rate obeys
dr(t) = z(t)dt + ¢'(t, 1) "dW (1), (A.3)

where

t t
o) = 0.0 +a=1) [ 60 o) ds+ [ 50 AW, (A4)
s=0 s=0
From this definition, the process for x(t) clearly obeys
dz(t) = y(t)dt + ¢ (t, 1) TdW (t), (A.5)
where
y(t) = £"(0,t) + (g — 1) ¢"(t, 1) T $(t, ) +

@=1) [ @0 o ds+ [ 00T (). (A6)

Proof of Proposition 1. If 7(¢) is Markovian, then its drift (¢) must be a function
of r(t), say z(t) = g(r(t)), for some continuous function g(-). Fix a time s and
consider a disturbance in the path of W (t) by AW (s). For simplicity, we assume g
to be differentiable. Then from equations (A.2) and (A.4), we see that the changes
at time s in the short rate and its drift are

Ar(s) = ¢'(s,s) AW (s), and Az(s) = ¢"(s,s)  AW(s).

But for AW(s) small enough, we must also have Axz(s) = ¢'(r(s)) Ar(s). This
equation must be satisfied for any value of r(s), so that

¢ (s,8) = g'(r(s)) ¢/ (s, 5) for all s <'t.
Since ¢’ is a scalar, this equation implies that ¢”(s,s) is proportional to ¢/'(s, s).

Unless ¢/ = ¢’ = 0, which is the deterministic case, ¢ cannot be proportional to
¢ because they must be orthogonal for ¢ to stay on the circle. Q. E. D.
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Proof of Proposition 2. In a two-factor model, we can set d = 2. The univariate
process for the short rate r(t) is not Markovian because its drift z(t) cannot be a
function of 7(t). But in a two-factor model, the vector (r(t), z(t)) must be Markovian
itself. Thus, we may take r(t) and z(t) as the two factors. This requires y(¢),
the drift of z(t), be a function of r(t) and z(t), say y(t) = g(r(t),z(t)) for some
continuous function g.

We assume without loss of generality that ¢(¢,t) has a non-zero entry (if any)
only in its first component, and we write ¢(¢,t) = (((¢), 0). There is no loss of
generality because, if ¢(f,t) # 0, then we can change the orthonormal basis of
Brownian motions to B(t) = (B1(t), Ba(t)), where By (t) = ¢(t, t) W (t)/| o(t,1)].
This procedure amounts to choosing a particular Choleski decomposition of the
noise in the economy. From now on, we assume that W(t) is chosen to start with
to coincide with the basis B(t).

Before proceeding further, we re-parameterize the function ¢ using polar coor-
dinates to enforce the restrictions that ¢(t,t) = ({(t), 0) and that ¢(¢,T) lies on a
circle. Write

o (cosl6(t,T)
where 0(t,T), the angle determining the position of ¢(¢,T) on the circle, satisfies
0(t,t) = 0. Clearly, ||¢(t,T)| = ||o(t, t)|| = |¢(t)|. By differentiation, we get

o1.1) =00 (i ). (A7)
o (00) = <o) {0 1) (TS T ) R () b 4
and
(4 T) = g(t){@’”(t, T) <‘Z$ 30" T) (4, T) (Ef;[[g((f %)D

/ sin(0(t, T)]
y (t,T)3< e )]> } (A.9)

Note that ¢(t,T) is deterministic; this follows directly from (A.7) because bond
prices have non-random volatilities by assumption, so that ¢/(¢t,T) = o¢(t,T) is
deterministic. We now turn to the implications of the ¢—-EH for the form of g and
¢(t,T). Assume that g is differentiable (with this assumption, we find that it is
in fact linear), and denote by ¢g; and gs its partial derivatives with respect to r(t)
and z(t). We use the variation method used in the previous proof: fix a time ¢ and
disturb the path of {W(s) | s > 0} at some point in the past 7 < t. Since ¢(t,T)
is deterministic, it is unaffected by this change; as a result, the short rate r(t), its
drift (t), and y(t), the drift of x(t), change by the amounts

Ar(t) = ¢'(r,t) AW(7),
Ax(t) = ¢"(1,t) AW (7),

and
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Ay(t) = ¢"'(r,t) AW (7).
But we must have also (for infinitesimal changes)

Ay(t) = gi(r(t), z(2)) Ar () + g2(r(t), z(t)) Az(t). (A.10)
This must hold for any value of (r(t),z(t)), and any 7. Hence, g; and g, must be
constant, so that for some scalars a, b and ¢, we have

y(t) = g(r(t),z(t)) =a+br(t) + cxz(t). (A.11)

Now, given the forms of Ar(t), Az(t) and Ay(t), equation (A.11) holds if and only
if

&"(,T) = b/ (t,T) + " (¢, T). (A.12)

Substituting (A.7-A.9) into equation (A.12) allows us to conclude that that re-
striction will be violated unless, for some constant w,

0(t,T)=w; b=-w? and c=0.

Since 6(t,t) = 0, the fact that ¢’ = w implies 6(t,T) = w(T —t). Since ((t) is
not stochastic, it must be constant (otherwise, absolute time would enter as an
independent argument of g, so that, strictly speaking, (r(t),z(t)) would not be
Markovian); let z denote the constant value of ((¢). This establishes the first two
parts of the proposition. The constant a in (A.11) is arbitrary, so that the drift
of z(t) is y(t) = g(r(t),z(t)) = a — w?r(t); but we let a = 7w?, and choose to
parameterize g in terms of 7 and w, rather than a and w.

To finish the proof, we need to find the form of the initial forward curve. Given
the form of ¢(¢,T), equations (A.2) and (A.6) imply that

y(t) = £1(0.5) +w* (F0.6) = r(t) — (¢ = 1=?).
from which we conclude that
a=7w?=f"0,t) — (g — 1) w?22 +w? £(0,1). (A.13)

This is a second order ordinary differential equation, a solution of which requires
two boundary conditions. These conditions come from the initial conditions for the
state of the system, r(0) and x(0). Clearly, f(0,t) = r(0) and from equation (A.4),
we see that f/(0,t) = z(0). The unique solution to (A.13) subject to these initial
conditions is (4.4). Q. E. D.

Proof of Proposition 3. We start by proving the second statement about the
processes of r(t) and x(t). The drift of r(¢) is z(¢) by definition. Given the assumed
form of ¢(t,T), the volatilities of 7(¢) and z(t) are (0, w((t)) and (—w?((t), 0), as
stated. The drift of x(¢), y(t), can be calculated from (A.6). Given (A.2) and the
form of ¢(t, T), we see that y(t) = f”(0,) — w? (r(t) — £(0,t) + (¢ — 1) g?(t)). The
stated result follows from the form of the initial forward curve, which implies that
£1(0,8) + W f(0,8) = (T + (¢ — 1) 2°).

We now turn to the first and third statements. The fact that the model satisfies
the g-expectations hypothesis is built into the form of ¢(¢,7"). The form of the
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processes for the short rate and its drift clearly show that (r(t), z(t)) is a Markovian
vector, since ((t) is assumed to be a deterministic function of this vector. If the
model of the yield curve is Markovian, then given the factor values, it should not
independently matter what value the time index ¢ has. In particular, equation (A.6)
must still hold for any reference date ¢ replacing date 0 (and t+ 7 replacing t). This
implies that for any ¢, f”(t,t +7) + w?f(t,t + 7) = w?(7 + (¢ — 1)22). The only
solution of this differential equation (where ¢ is fixed and the variable is 7) satisfying
the boundary conditions f(¢,t) = r(t) and f'(t,t) = z(¢) is

ft,t+71)= (f—i— (g—1) 22) (1 - cos[um’]) +7r(t) cosjw ] + M

Q. E. D.

w

Proof of Proposition 4. The proof is identical to that of the previous proposition.
Q. E. D.
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