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ABSTRACT. We show how to estimate any model of the term structure of in-
terest rates in the affine-exponential class, which includes the Vasicek (1977),
Cox, Ingersoll, Jr., and Ross (1985), and Longstaff and Schwartz (1992) models,
among many others. For most models in this class, analytical expressions for
both bond prices and the conditional distribution for the state variables are not
available. However, there are (a) fast and accurate numerical solutions to the
bond-price partial differential equation and (b) closed-form expressions for the
first two conditional moments for the state variables. We show how to construct
a quasi-maximum likelihood estimator using (a) and (b) based on the maximum
likelihood estimator of Chen and Scott (1993). We discuss extensions to other
estimation techniques.

1. INTRODUCTION

The term structure of interest rates contains information about the expected
path of the short term rate. When the unbiased expectations hypothesis holds,
for example, the curve of instantaneous forward rates is indistinguishable from the
expected path of future short rates. The evidence clearly shows, though, that the
forward premium (the difference between the forward rate and the expected future
spot rate) does not equal zero, and does not even remain constant, so that the
implications of the unbiased expectations hypothesis are soundly rejected. The
challenge of the term structure modeling, then, is to account for the behavior of
forward premiums, so that the term structure reveals its information about the
expected path of the short rate.

Duffie and Kan (1995) characterize a class of arbitrage-free term structure mod-
els in which zero-coupon yields are affine functions of Markovian state variables.
This exponential-affine class of models, which is both analytically and numerically
tractable, can also account for the empirical behavior of forward premiums. We
show how to estimate any model in this class, which includes Vasicek (1977), Cox,
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Ingersoll, Jr., and Ross (1985), and Longstaff and Schwartz (1992) models, among
many others. For most models in this class, analytical expressions for both bond
prices and the conditional distribution for the state variables are not available. How-
ever, there are (a) fast and accurate numerical solutions to the bond-price partial
differential equation (PDE) and (b) closed-form expressions for the first two condi-
tional moments for the state variables. We show how to construct a quasi-maximum
likelihood estimator using (a) and (b) based on the maximum likelihood estimator
of Chen and Scott (1993). We discuss extensions to other estimation techniques.

2. ARBITRAGE-FREE MODELS OF THE TERM STRUCTURE

The state-price deflator. Let V (¢) be the value at time ¢ of an asset. The absence
of arbitrage implies the existence of a strictly positive state-price deflator, m(t), such
that for any s > ¢t

m(t) V(t) = Eifm(s) V(s)], (2.1)

as long as the asset pays no dividends between t and s. We can think of the
state-price deflator as the marginal utility of wealth. With this interpretation, the
left-hand side of (2.1) is the marginal cost in utility terms of buying the asset at
time ¢ and the right-hand side is the expected marginal benefit in utility terms of
selling the asset at time s. Thus, (2.1) is a first-order condition for equilibrium. The
marginal-utility-weighted asset price, z(t) := m(t) V(t), is also called the deflated
asset price. Restating equation (2.1) in terms of the dynamics of deflated asset
prices, the absence of arbitrage implies that z(¢) is a martingale; that is, the current
value equals the expected future value, z(t) = E;[2(s)], and its expected change is
zero.
Assume that the state price deflator can be represented as an Ito process:

dmi(t) T

) r(t)dt — A(t) dW (1), (2.2)
where r(t) is a scalar, A(t) is a length-d column vector, and W (¢) is a length-d column
vector of independent Brownian motions. Moreover, let us write the dynamics for
(a strictly positive) V (t) as follows:

i) = py(t)dt + oy (t) " dW (t). (2.3)

V(t)
Ito’s lemma delivers the process for z(t) in terms of (2.2) and (2.3) using Ito’s
lemma:

= pa(t) dt+ o.(8)TdW (1), (2.4)

where
pa(t) = py () — () = At) "o (t) (2.5)

and
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Then (2.5) and the martingale property u,(t) = 0 imply
py (t) = r(t) + At) o (t). (2.6)
We see that r(t) is the short-term risk-free interest rate! and A(t) is the market

price of risk.

Zero-coupon bonds. Let p(¢t,T) be the value at time ¢ of a default-free zero-
coupon bond that pays one unit of account at time T'; i.e., p(T,T) = 1. Using (2.1),
we can write the following expression for the term structure of interest rates:

m(T)
t,T)=FE . 2.7
Now, write the dynamics for zero-coupon bond prices as follows:

dp(t7 T) T
= up(t, T)dt +op(t,T) dW(2). 2.8
o = (tT)d 4 0y (0.T) AW (1) (28)

Then, the absence-of-arbitrage condition (2.6) implies
up(t.T) = 1(t) + MO o, (£, ). (2.9)

Thus, modeling the term structure of interest rates in an arbitrage-free way can
be reduced to modeling the dynamics of the state-price deflator, which in turn can
be reduced to specifying the dynamics of () and A(¢). In the next section, we write
r(t) and A(t) in terms of a vector of state variables and we specify the dynamics of
those state variables.

Markovian state variable representations. Let X (t) be a length-d vector of
variables, and let the dynamics of X (¢) be given by
dX(t) = ux(t)dt + ox () dW (t). (2.10)

A Markovian state variable representation of the term structure follows from spec-
ifying the short rate r(t), the market price of risk A(¢), the drift ux(t), and the
diffusion ox (t) as functions of the state vectorX (t), so we can write:

r(t) = R(X(t)), (2.11a)
At) = A(X(¢)), (2.11b)
px (t) = px(X(1)) (2.11¢)
and
ox (t) = ox(X(t)) (2.11d)
Under this specification, bond prices have the following form:
p(t,T) = P(X(t),T —t). (2.12)

! Assume there is a money market account, 5(t), with drift us(t) and no instantaneous risk; that
is, its process is d3(t) = [(t) us(t) dt and ps can be interpreted as the riskless short-term rate.
Letting V' (t) = B(t) in (2.6) implies that r(t) = pg(t), so that the relative drift of m(t) is indeed
the negative of the riskless short rate.
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Thus our strategy is this: Given ux(x), ox(x), R(z), and A(x), solve for P(x,T)
using the no-arbitrage condition (2.9).

Since bond prices are functions of the state vector, Ito’s lemma yields analytical
expressions for their drifts and diffusions. Let

O P(z,T)
or '’
0 P(z,T)
0x1
Py(z,7) = : ,
0 P(z,T)
dxg

P (z,7) =

and
92 P(x,T) o 92 P(x,7)
Is] az% dx10xy

P (x,7):

82 P(z,7) o 82 P(x,7)
Oxg0xy dz3

Then the process (2.8) becomes

% = pp(X(t), T —t)dt + op(X(t),T —t) dW(t),
where
ot r) = L B 3 B8 (I BED 1
op(z,r) = 2@ Pe(@7) (2.13b)

P(z,7)

and tr[a] is the trace of matrix a. In view of (2.13), the absence-of-arbitrage condi-
tion (2.9) turns into a partial differential equation:

R(a) = jix(e)” (et ) +

Pa.7)
so[(ZED) @] - (FED). @
e pix(z) = px(z) — ox(z)  Az). (2.15)

Note that the drift ux and the price of risk A affect bond prices only through their
effect on [ix, which is often called the risk-adjusted drift. To justify this term,
observe that [ is the drift of the state variables that bond prices would imply under
the assumption that the price of risk is zero. Duffie and Kan (1995) do not even
introduce p or A; instead, they postulate an affine form for the risk-adjusted drift
f(z) directly.

The approach we have taken allows us to use the information in the whole term
structure to identify the process for the short rate. This contrasts with the time



ESTIMATING EXPONENTIAL-AFFINE MODELS 5

series approach which uses only observations of the short rate process itself. The
conditional expectation of r(s) given the information at time ¢ < s is given by

Elr(s) | X(1)] = E[R(X(s)) | X(2)].

We see that forecasting the short rate is tantamount to forecasting the state vari-
ables, which requires knowing the drift of X (t), ux(z). Note that the risk-adjusted
drift, which is sufficient to explain the shape of the yield curve at any point in time,
is useless for forecasting yields; for this purpose, we need the actual drift. Our
strategy requires a time series of term structures as panel data. The cross-sections
(each yield curve) contains information about fix, ox, and R. The time series of
any given yield (in particular, but not limited to, that of the short rate) contains
information about ux and ox. Together they can identify all of the parameters in
the model, including the parameters of A.

3. EXPONENTIAL-AFFINE TERM-STRUCTURE MODELS

First we review the setting so far. X(t) is a length-d column vector of state
variables or factors,® that obeys the following process:

dX (t) = ux (X (1)) dt + ox (X (t)) "dW (¢), (3.1)

where px(x) is a length-d column vector and ox(z) is a d X d matrix. Let the
short-term risk-free interest rate and the market price-of-risk vector depend on the
state variables:

and

Then the process for the state-price deflator is given by

) — “ROX(@) e~ ACKE)T AW 0. (32)

Now, define

M(z) = (

where M(z) is (d+1) x 1 and S(x) is d X (d+1). Then the resulting term structure
model falls in the exponential-affine class if and only if

R(x)

MX(CE)> and  S(z):= (A(z) ox(z)),

M(z) and S(z) " S(z) are affine in z. (3.3)

2We will use the two terms interchangeably.
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In particular, we can write

d
R(x) =ro+ Z Ti T (3.4a)
i=1
d
/Lx(.%) =by+ Z b; z;, (34b)
i=1
d
ox(z) ox(z) =Gy + Z G; z;, (3.4c)
i=1
and
d
ox(z) "A@)= ho+ Y _ hizi, (3.4d)
i=1

where the r; are scalars, the b; and h; are d x 1 vectors and the GG; are d x d matrices.
Condition (3.3) is stronger than that given by Duffie and Kan, whose drift condition
isonly that ix = px— Ao x be affine, whereas we require that both the actual drift
px and the risk adjustment ATox be affine. Under our conditions, the risk-adjusted
drift is also affine, since
2
fix(x) = (bo — ho) + > _(bi — hi) ;.
i=1

The central implication of teh affine structure summarized in (3.3) is that, setting

aside the question of existence, bond prices have the form

P(x,7) =exp <—A(T) - B(T)Tx> : (3.5)

Using (3.5), the PDE (2.14), which is the condition for absence of arbitrage applied
to bond prices, can be written in terms of the parameters of M and STS. The
building blocks for this specialization of the general PDE are

PT(va)i_ ") — B' () &
T A =B,
Py(z,7) .
P(l‘,T) - B( )7

and
PM(I,T)_ . T

Plugging these expression into (2.14), there results
1
A(r)+ B'(t) 'z — B(r) T ix(z) + 5 B(r)Tox(z)Tox(z) B(t) — R(z) = 0. (3.6)

The reason for imposing an affine structure now becomes clear. PDE’s are notori-
ously difficult to solve, even numerically. But the PDE (3.6) decomposes into d + 1
ordinary differential equations (ODEs). To see this, write (3.6) using the explicitly
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affine representations (3.4) and collect terms in x;: The coefficient of each z;, as
well as the constant term, must be identically zero. Thus, we have

A1) =10+ B() (b~ ho) — 5 B(r) Go B(r) (3.7a)
and

Bi(r) = i + B() (b — he) — 5 B(r) G B(r) (3.7h)
subject to

A(0)=B;(0)=0 (3.7c)
for ¢ = 1 to d, where the initial conditions follow from the requirement that

p(T,T) = 1. It is the simple structure of (3.7) that gives exponential-affine models
their tractability—both analytically and numerically. Notwithstanding this relative
tractability, only a small fraction of potential models in this class have been solved
analytically. Even for some models that have been solved analytically, the solu-
tion can be so complicated as to make implementation impracticable.® Fortunately,
(3.7) is a set of first-order (quadratic) ODEs that can easily be solved by standard
numerical techniques.

4. MAXIMUM LIKELIHOOD ESTIMATION USING THE CONDITIONAL DISTRIBUTION
OF YIELDS

In the previous section, we studied the link between the state variables and zero-
coupon bond prices (or equivalently zero-coupon yields) at a single point in time. In
this section, we use the dynamics of the state variables to establish the link between
one yield curve and another over time; in fact, we obtain an analytical expression for
the conditional factor transitions. We also briefly review a method in Pearson and
Sun (1994), who show how to use these transitions to obtain maximum-likelihood
estimates of multi-factor CIR models.

Start with the relationship between zero-coupon yields and the state variables.
Define the yield to maturity as

_log(p(t, 1))

t,T):= 4.1
In view of (3.5), in the exponential-affine case yields to maturity satisfy:
1
y(t.T) = =— <A(T —t)+ B(T — t)TX(t)) .
Select a set of d distinct maturities {71, ,74}, and consider the corresponding

vector of yields at time ¢, Y (¢):

y(t, t +11)
Y(t):=
y(t, t + 7q)

3See Chen (1995) for an example of how complicated a closed-form solution can get.
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The relationship between the vector of yields and state variables is given by
Y(t)=A+BX(t),

where
A(m)/n
a=|
A(1q)/Ta
and
B(ri)/n Bi(m)/m -+ Ba(m)/m
B = : = : - :
B(7a) /14 Bi(ra)/ta -+ Ba(7a)/1a

Given observed yields, Y (¢), we can then easily solve for state variables:
Xt) =By - A.
Suppose that the conditional distribution of the state variables is known and
given by
fx(X(s)| X(t)) for t<s.
Note the distribution fx involves the drift ux (x) itself rather than its risk-adjusted
counterpart fix(z). The conditional distribution for the yields follows directly from

fx and involves the Jacobian of the transformation from Y (¢) to X (¢). Since the
transformation is

its Jacobian is
B 0X(y)\ oy 1
Jdet( Y )det(B )7det(B)’

which implies that the conditional distribution of the yields is

1
Y Y = XY XY .
PAY () 1Y (0) = gy P06 | XV (0)
Given a set of observations at times {1, - ,¢,}, the log-likelihood function is given
by
L=> log(fy(Y(t:) | Y(ti-1))), (4.2)
i=1

where tg = —oo so that fy (Y (¢1) | Y (o)) is the unconditional distribution of Y (¢1).

If the model were well-specified and yields observed without errors, the choice
of maturities for the yields would not matter because any choice would imply the
same time series for the factors. But in fact, the model is not necessarily well
specified, and the assumption that yields are observed without errors is not strictly
tenable. In large sample, the difference would be hardly noticeable, but in small
samples different results would obtain when different maturities are used. Since
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there is information contained in each of the yields, efficiency requires taking it
into account by using more yields than the number required to infer the level of the
state variables. One approach that was implemented by Chen and Scott (1993) is to
assume that the additional yields are measured with error. While the asymmetry
entailed in this assumption is not well justified, computationally this provides a
convenient framework.

Suppose, then, that there are m additional yields that are measured with error,
besides the d yields that are observed without errors

Y(t)=A+BX(Y(t))+e(t),

where
y(t,t+71)
vi=|
y(t, t+ 7m)
Let the conditional distribution of measurement errors be given by

h(e(t:) | e(ti-1))-

Then the log-likelihood function with measurement errors is given by
Lr =L+ log(h(e(ti) | £(ti1))). (4.3)
i=1

5. QUASI—MAXIMUM LIKELIHOOD

The technique outlined in the previous section requires knowing the conditional
distribution for the state variables, fx. In many cases, the conditional distribution
is not known. Even in cases where there is an analytic solution to the bond price
formula, there may not be an expression for the factor transitions.? Quasi-maximum
likelihood, by contrast, requires knowing only the first two conditional moments. It
can be justified on a GMM basis.

Define the multivariate normal distribution

Fx(X(s) | X (1)) = (2m)7% [V |77

exp {—% (X(s) — EX)TV)EI <X(s) — EX)} ,
where
Ex = E[X(s) | X(t)] and Vx:=V[X(s)|X(t)].

Then let

= oE ) | X))

Replacing fy with fy in (4.2) and (4.3) and maximizing produces a quasi-maximum
likelihood estimator. In order to make this estimator operational, we need expres-
sions for the first two conditional moments of X ().

(Y (s) Y1)

4See Chen (1996).
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Conditional moments. Here we present closed-form solutions for the first and
second conditional moments for affine state-variables. The solutions are general

and do not depend on diagonalizability as in Duan and Simomato (1995).

Conditional expectation. Since X (s) = X (t) + [_, dX (v),
BX(E) =X+ [ BX)
v=t

=X+ [ Blax(Xe))]dv.

Referring to (3.4b), we can write ux(z) = bg + Bz, where B := (b1, ...

thus Eijux (X (v))] =bo + B E[X(v) | X(t)]. Then we can write
X@@:X@+/gM+BX@wMu

where

X(t,s) := E[X(s) | X(2)].
Differentiating both sides of (5.1) with respect to s produces
X'(t,s) = by + BX(t,s),

subject to

where

K@@:E%X@Q.

,bq), and

(5.2a)

(5.2b)

Equation (5.2a) is a set of first-order, linear differential equations that must satisfy

boundary condition (5.2b). The solution to the system (5.2) is

X(t,T) = &(T —t) X (t) + D(T — t) by.

where

is the fundamental matrix and

(5.3)

(5.4)



ESTIMATING EXPONENTIAL-AFFINE MODELS 11

Conditional variance. Let V;[Y] denote the conditional variance of Y, and let v(¢,T) :=
Vi[X(T)]. We can derive an expression for v(t,T) as follows. Applying Ito’s lemma
to (5.3) for fixed T', the dynamics of the conditional expectation are given by

dX(t,T) = 6x(t,T) dW (t), (5.6)
where
ox(t,T) :=ox(X(t)D(T —1)".
Note that
. T R R T
X(T) = (t,T)+/_ dX(s,T) :X(t,T)+/_ ox(s5,T) dW (s).
Thus

o(t,T) =V, UT 6X(S,T)TdW(s)] = E, [/T 6x(s,T) 6x(s,T)ds|, (5.7

=t =t

where the second equality is shown in Duffie (1996).° Using (3.4c), we can write

E, [6){(8, T) 6x(s, T)} — BT — 5)F(t,s) (T —5)7,

where,
d A
F(t,s):=Go+ Y _ GeX(t,s). (5.8)
=1
Therefore, we can write
T
v(t, T)= | DT —s)F(t,s)D(T —s)" ds. (5.9)

t
See Fisher and Gilles (1996) for further results.

6. YIELD FACTOR MODELS

Let us consider models where the factors are yields themselves. This is discussed
in Duffie and Kan (1995), which in fact is titled “A yield factor model of interest
rates.”

Given Y (t) = A+ BX(t), we have
dY (t) = BdX(t) = py (Y () dt + oy (Y (1)) dW (2),

where uy (y) and oy (y) "oy (y) are affine in .9

SEquation (5.7) is a generalization of Duffie’s equation (1) on page 84. He cites Protter (1990) for
a proof.
6See the Appendix.



12 MARK FISHER AND CHRISTIAN GILLES

We can eliminate X (¢) from the formula for bond prices:
PY(?/? 7-) = P(X(y)v 7-)
— exp (~A(r) = B(1) X(1))

= exp (—AY(T) - BY(T)TZ/) ;
where
Ay(r) = A(r) - B(r)"B ' A
and
By(t)" = B(r)'BL.

We still have the restrictions Ay (0) = 0 and By (0) = 0 (from p(7,7) = 1). But
there are 2d additional restrictions that arise from the following relationship:

y(tt+7) == () + By ()Y (). (6.1)

For each 7; in the set of maturities that makes up Y (¢), (6.1) is an identity that
implies

Ti
where e; is a vector of zeros with a one in the i-th position. These additional
restrictions make it difficult to solve the PDE.

7. PREVIOUS AND OTHER ESTIMATION TECHNIQUES

Exponential-affine models:

e Brown and Dybvig (1986). Nonlinear least squares estimates of one-factor CIR
short rate using cross-section information only.

e Brown and Schaefer (1994) and Brown and Schaefer (1996). Nonlinear least
squares estimates of one-factor CIR real short rate using cross-section infor-
mation only.

e Gibbons and Ramaswamy (1993). GMM estimates of one-factor CIR short
rate model using unconditional moments.

e Pearson and Sun (1994). Maximum likelihood estimates of two-factor CIR
using bond prices to infer state variables.

e Chen and Scott (1993). Maximum likelihood estimates of one-, two-, and
three-factor CIR, extending Pearson and Sun to include yields measured with
error.

e Ball and Torous (1996). Uses Kalman filter estimates of one-factor CIR short
rate to overcome unit root problems.

e Fisher and Gilles (1996). GMM estimates based on Campbell-Shiller-type
regression moments.

Other (univariate and time series approaches):
e Chan, Karolyi, Longstaff, and Sanders (1992).
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e Pagan, Hall, and Martin (1995). Review time series literature on the term
structure and compare with finance approach.

Kalman Filter. Assume all yields are measured with error. We can write the
measurement equation:

Y(t)=A+BX(t)+ (1),

where is a (d + m)-dimensional vector. Given

A

X(ti, tig1) = By [ X (tig1)]
and

v(ti, tiv1) = Vi, [X (tiv1)],

we can write the transition equation:

X (tis1) = X (ti, tivr) + vt tiv) 2 n(tisn),

where 7(t;11) is a vector of zero-mean and unit variance error terms and v(¢;, ti+1)1/ 2

is the Cholesky decomposition of v(t;,t;+1). For a Gaussian exponential-affine
model, the Kalman filter provides the optimal solution to prediction, updating,
and evaluating the likelihood. For a non-Gaussian model the Kalman filter delivers
inconsistent parameter estimates and how to proceed is an open question

See Duan and Simomato (1995), Chen and Scott (1993), and Buraschi (1996) for
implementations of the Kalman filter.

APPENDIX A. THE AFFINE STRUCTURE IN MORE DETAIL

Duffie and Kan (1995) showed that if ox(z)"ox(z) is affine in z, then
ox(z) ox(z) =Q"D(z)Q, (A1)

where Q) is an invertible constant d x d matrix and D(z) is a diagonal matrix,

up(z) 0 e 0
0 e 0 wuq(x)

where
T
ui(z) = a; + B; T.
Moreover, we can write

D(CL’) = Do + ZDz Zq,
=1
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where each D; is a positive semi-definite d x d matrix. Thus we can write G; =
Q" D; Q. Also, given (A.1), we can write H; = Q' D; 6 for some constant vector §.
Note that an implication of this affine structure is that

(UX(x)TUX(:E)>_1 ox(z) Az) = Q16 (A.2)

is independent of x.
Given Y (t) = A+ B X(t), we have

dY (t) = BdX(t) = py (Y () dt + oy (Y (1)) dW(2),

where
py (y) = Bux (X (y))

=B(a—bB A +BbB 'y
=ay +byy

and

oy (y) ov(y) = Box(X(y)) ox(X(y)B"

- (B QT) D(X(y)) (Q BT)
= Qy DY (y) Qy,

where

uyi(y) = (i — BB A) + 8 B 'y = ayi + Byiy.

We see that dynamics for Y(¢) is affine in Y (¢) just as the dynamics for X (t) is
affine in X (¢).
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