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ABSTRACT. We derive expressions for various term premia in the context of the
class of affine-exponential models of the term structure. In addition, we show
how regression tests of the expectations hypothesis can be understood in terms
of these models. In particular, we derive expressions for the regression coefficients
in terms of the parameters of the models. Moreover, these expressions can used
to define a GMM estimator of the parameters in a given non-Gaussian affine-
exponential model.

1. INTRODUCTION

The unbiased expectations hypothesis—that forward rates are unbiased forecasts
of future spot rates—has a number of implications that can be tested in a regression
setting. These tests can often be structured so that under the expectations hypoth-
esis the intercept is zero and the slope is one. Campbell and Shiller (1991), among
others, have documented that the slope is not one. Moreover, the slope appears to
vary systematically, but not monotonically, with various maturities. These findings
have been presented as a challenge to term structure modeling.

In this paper, we show how to use the exponential-affine class of models of the
term structure of interest rates to analyze various term premia and the expectations
hypothesis. In addition, we show how regression tests of the expectations hypothesis
can be understood in terms of these models. In particular, we derive expressions
for the regression coefficients in terms of the parameters of the models. Moreover,
these expressions can used to define GMM estimators of the parameters in a given
non-Gaussian affine-exponential model. We show that simple models from finance
can explain a large fraction of the so-called bias in the regression coeflicients.
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In a sense, this paper is a generalization of Frachot and Lesne (1994), who first
found closed-from expressions for the regression coefficients in a one-factor (gener-
alized) CIR model. While the didactic power of that paper is great, the empirical
importance is limited since term structures are typically driven by more than one
factor.

The class of exponential-affine models of the term structure of interest rates is
characterized by Duffie and Kan (1995). This class of models includes as spe-
cial cases Vasicek (1977), Cox, Ingersoll, Jr., and Ross (1985, CIR), Longstaff and
Schwartz (1992), and Chen (1996), among many others. The models are character-
ized by the feature that the log of zero-coupon bond prices are affine functions of
the state variables. Duffie and Kan derive restrictions on the process for the state
variables under the equivalent martingale measure. They also show that the partial
differential equation that characterizes the term structure decomposes into a set of
simultaneous ordinary differential equations that can be easily solved numerically
without a closed-form analytic solution for zero-coupon bond prices.

The expression for the regression coeflicients in terms of the parameters of the
model involves two distinct parts. One part is the factor loadings—the relationship
between the factors and zero-coupon bond prices described above. The other part is
the unconditional variance of (stationary linear combinations of) the state variables
under the physical measure. In order to handle both the physical and martingale
measures, we need to generalize Duffie and Kan’s notion of an exponential-affine
model of the term structure.

Here is an outline of the rest of the paper: In Section 2 we describe exponential-
affine term structure models. In Section 3, we derive expression for the first two
conditional moments. (The unconditional variance is derived in the Appendix.) In
Section 4, we derive closed-form expressions for a variety of term premia. In Section
5, we derive closed-form expression for the regression coefficients of the two sets of
regressions that Campbell and Shiller (1991) run. In Section 6, we design GMM
estimators based on those expressions. In Section 7, we report the results of our
estimation.

2. EXPONENTIAL-AFFINE TERM-STRUCTURE MODELS

Let X(t) be a length-d column vector of state variables or factors.! Let the
process for the state variables under the physical measure be given by the process
for the state variables under the physical measure:

dX (t) = ux (X (1)) dt + ox (X (t)) " dW (¢),

where px(x) is a length-d column vector and ox(z) is a d x d matrix. Let the
price-of-risk vector be given by A(t) = A(X(¢)), where A(x) is a length-d column
vector, and the short-term riskless interest rate be given by r(t) = R(X(¢)). It is
convenient to define the following:

M(z) = (R(z) px(x)")

"'We will use the two terms interchangeably.
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and

S(x) = (A(@) ox(2)),

where M(z) is 1 x (d+1) and S(z) is d x (d+ 1). Then, for our purposes, we have
an exponential-affine model of the term structure if

M(z) and S(z)"S(z) are affine in z. (2.1)

Duffie and Kan show that ox(z) must have the following structure: ox(x) =
0% () Q, where € is a constant d x d matrix and 0% () is a d x d diagonal matrix

with typical element /c; + ﬂ: x. The affineness of the state variables means

pux(x)=a+bzx (2.2)

and .
ox(z) ox(z) = A+ Bra, (2.3)

=1

where a is a d X 1 vector and b, A, and By are d X d matrices.

From condition (2.1) flow the following two results. First, since px(x) and
ox(z)Tox(x) are affine in x, we have expressions for (i) E;[X,] and V;[X,] that
are affine in X (¢) and (4) E[X(t)] = 0 and V[X(t)] =V if X (¢) is stationary. We
discuss these expressions in the next section.

Second, since R(x), fix(z) = px(z) — ox(x)TA(z), and ox(x) Tox(x) are affine
in z, we have exponential-affine model of the term structure under the equivalent
martingale measure. In particular, the price at time t of a default-free zero-coupon
bond that pays one unit of the numeraire at time 7', is given by p(¢t,7") = P(X(t),T—
t), where

)T

P(X(t),T —t) = exp[—A(T —t) — B(T —t)" X (¢)], (2.4)

where B(T —t) = (B1(T—t), ..., B4(T —t))" is a column vector of factor loadings.
The yield-to-maturity on a zero-coupon bond is given by y(¢,T) = V(X (t),T — t)
where
log[P(X (1), T — )
T—-1

V(X(),T—t)=
1

— (T—_t> <A(T —t)+ B(T — t)TX(t)>, (2.5)

and the instantaneous forward rate is given by f(¢,7) = F(X(t),T — t) where

—9log[P(X(t),T —t)]
oT
= A(T-t)+B(T-t)" X(¢t). (2.6)

F(X(t),T—t) =

Finally, note that R(x) = F(z,0) = A'(0) + B'(0) " x.
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Vasicek and CIR factor loadings. We will refer often in what follows to in-
dependent multi-factor Vasicek and CIR. In the Vasicek model the factor loadings
are
1— 6—Hi(T—t)
Bi(T—-t) = ———,
(Tt =

while in the CIR model they are
2 (e (T=1) — 1)

29 + (ki + Xi + i) (e (T=D — 1)

Bi(T —t) =

where ~; = \/(m +X\i)2+ 202

3. CONDITIONAL MOMENTS

In this section present closed-form solutions for the first and second conditional
moments for affine state-variables. The solutions are general and do not depend
on diagonalizability as in Duan and Simomato (1995). We show the simplifications
that diagonalizability delivers, and we discuss trend-stationarity and cointegration.

General form of the first two conditional moments. Define the conditional
expectation of X (T') as

A~

X(t,T) == E[X(T)|X(t)).

For notational convenience define X'(t,T) := d X (t,T)/8T. From (2.2), we have a
system of ordinary differential equations for the conditional expectation for fixed ¢,

X'(t,T)=a+bX(t,T) (3.1)
with the initial condition .
X(t,t) = X(t).
Let?
(1) = €7 (3.2)
and

The solution to the system (3.1) is

X(t,T) = (T —t) X(t) + D(T — t) a. (3.4)

Applying Ito’s lemma to (3.4) for fixed T, the dynamics of the conditional expec-
tation are given by

dX(t,T) = 6x(t,T) dW (1), (3.5)
where

ox(t,T) = ox(X(t)®(T —1t)".

2®(r) is called the fundamental matrix.
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Let V;[Y] denote the conditional variance of Y, and let v(¢,T) := V;[X(T')]. We
can derive an expression for v(¢,T") from (3.5) as follows. Note that

T T

dX(s,T):X(t,T)+/ ox(5,T) dW (s).

s=t

X(T)=X(T) +/

s=t
Thus

o(t, T) =V, [/T 6X(5,T)TdW(s)} = F, UT 6x(s,T) 6x(s,T)ds|, (3.6)

=t =t

where the second equality is shown in Duffie (1996).3 Using (2.3), we can write

E, [aX(s, T) 6 (s, T)] — (T — ) F(t,s) BT —s)7,

where,
d
F(t,s) = A+ Bi X(t,s). (3.7)
/=1
Therefore, we can write
o(t,T) = / DT ) Flt.s) (T — ) ds. (3.8)
t

Diagonalizability. When b is diagonalizable, we can write b = Q x Q~', where
k is a diagonal d x d matrix whose diagonal elements, x;, are the eigenvalues of b
and @ is an invertible d x d matrix whose columns are the eigenvectors of b. In
this case ®(7) = Qe*"Q', and D(7) = Q [, e"*dsQ'. Note that when no
element on the diagonal of k is zero (i.e. k; # 0 for i = 1 to d), we can write
Jo e"tds = w7 (e"T —1).

When b is diagonalizable, we can write

v(t,t+7)=Q {/T e ) F(t,s) e (779 ds} Q. (3.9)
0

where F(t,s) := Q7' F(t,5) (Q~")". Let p(t, 7) denote the matrix in curly brackets
in (3.9). Note that the (7, j)-th element of p(¢,7) is given by

pij(t,T):/ e~ (Ritr;) (7=s) Fij(t,s)ds. (3.10)
0

Let p(t,o00) :== lim p(¢,7). In the Appendix we show that when all the eigenvalues
T—00

are real and negative (i.e., k; < 0 for i =1 to d), we can write

1 1 8ma,,
(1 o0) = R P
pw( 700) Ki + Kj < ij T Km, >’

3Equation (3.6) is a generalization of Duffie’s equation (1) on page 84. He cites Protter for a proof.
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where
am = (Q_l a)m
Aw - (Q_l A (Q_l)T)U
and .
= (@ Be(Q ) )ij Qum-
(=1

Thus we have a closed-form solution for the unconditional variance v(t,t 4 c0) in
this case.

Equilibrium points and trend-stationarity. An equilibrium point, 8, for sys-
tem (3.1) is one where X'(t,t+7) = 0 for all 7 > 0. From (3.1) we see that we must
have —b 6 = a. If b has full rank, then the unique equilibrium point is given by 6 =
—b~!a. When an equilibrium point exists, we can write ux (X (t)) = K (6 — X(t)),
where K = —b.

Since X(t,t) = X(t), at an equilibrium point we have X (t) = 6. We can substi-

tute X (t) = X(t,t 4+ 7) = 6 into solution (3.4) and write:
(1 - @(T)) 0 =D(7)a. (3.11)

Thus using (3.11) we can write (3.4) as

~

X(t,t+7)=0+(r) (X(t) - 9). (3.12)

Equation (3.12) is the standard way in which the conditional expectation is written
in CIR and Vasicek.

Consider the way in which a change in the current value of one of the state
variables affects the conditional expectation of itself or another state variable. From
solution (3.4) we have

dX;(t,t+7)
et U (1),
dX; (1) (7)
Define
®(00) = lim P(7). (3.13)
T—00
In no state-variable is to affect the expectation of itself or any other state variable
at the infinite horizon, then we must have
®(o0) = 0. (3.14)

We say that the system of state variables is trend-stationary when condition (3.14)
holds. Note that if condition (3.14) holds and b has full rank, then we have, using
(3.12), X (t,t 4 c0) = 0.4

By contrast, if some element of ®(c0) is not zero, then the system of state vari-
ables is not trend stationary. In this case there is no unconditional expectation. As

4These two conditions need not go together, however. See Fisher and Gilles (1996).
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an example, suppose that b is diagonalizable. Then ®(co) = 0 if and only if x; < 0
for i =1 to d.

4. TERM PREMIA

Geometric zero-coupon bond returns. From equation (2.4), Ito’s Lemma gives
the process for the log of bond prices:

dlog[P(X(t),7)] = pp(X(t), T —t)dt + op(X(t), T — t)TdW(t)
where
ip(X(t),7) = =B(r) T ux (X (t)) + A'(r) + B'(1) T X (¢)

and
op(X(t),7) = —0o(X(t)) B(1).

Using (2.6) we can write
Ap(X(t),7) = F(X(¢),7) = B(r) ux (X (2))
=FO,7)+H(T -t)"(X(t) - 90), (4.1)
where
H(r)=B'(r) —b" B(1),

In the Vasicek model, H(7) = 1.

Constantinides (1992) calls fip(X(t),7) the geometric expected bond return.
Here we generalize a finding of his. Given Ef[ux(X(t))] = 0, then—taking un-
conditional expectations of (4.1)—we have

Elpp(X(t),7)] = F(0,7).

Hence, the unconditional geometric return equals the unconditional forward rate
for the matching maturity.

Before proceeding, note that deriving the process for (the log of) bond prices we
have allowed the maturity of the bond to decrease as time passes. Thus we have
the written the process for a given zero-coupon bond. In contrast, one can derive
the process for fixed-maturity “bond” prices. Ito’s Lemma gives

dlog[P(X(t),7)] = —B(7) "dX (t)
= —B(r) ' px(X(t))dt — B(r)Ta(X (1)) dW(t).

Thus the difference between the two processes is the forward rate.

Forward rates.
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The process for forward rates. Given (2.6), the process for forward rates can be
written as

df(t,T) = pp(X(t), T —t)dt +op(X(t), T — ) dW (1),

where

uy(x(1),7) = - 2L 0:7)
= HPEOD )T (x)
=200 ey -0) (12

and

20 xay B)

Notice that the ergodic forward-rate drift equals minus the slope of the ergodic
forward rate curve:

op(X(t),7) =

oOF(0, T
/,Lf(@,T) = —%

Note that if we were holding the maturity 7 fixed (rather than holding the maturity
date T fixed), we would have df (X (t),7) = —B'(7)"dX(t), the drift of which is
different from (4.2) by the slope of the forward rate curve.
Forward rate premium. Define the forward rate premium as
Up(t,T):= f(t,T) — Er(T)].
For the exponential-affine class, we can write
Wit t+7) = (A1) + B()TX(W) ~ (40)+ B(0) B[X(t+7)]).
Using (3.12) we can write the forward premium as the ergodic premium plus a
term that depends on the deviations of the state variables from their means:
Wp(t,t+71)=F(0,7)— RO)+G(r)(X(t) - 0), (4.3)
where
G(r) = B'(r) - &(r)TB/(0),

is the vector of factor loadings for the forward rate premium.

For the Vasicek model, G(7) = 0, and the forward premium is non-random and
depends only on maturity.® For the CIR model, however, the i-th factor loading is
given by

42 enT

Gi(r) =e M7 - p
(2%‘ + (Iii + A\ + 7@)(67’77 — 1))

5Campbell (1986) derived this result in a general equilibrium setting.
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Thus for CIR the forward premium is random, in that it depends on the state
variables which are themselves random. In the next section we will see how this
randomness helps explain some regression results.

The zero-coupon yield premium. In this section, we derive the expression for
the zero-coupon yield premium:
1 T

w.(t,T) =yt T) - T
t

Ei[R(X,)] dv. (4.4)
We can write the zero-coupon yield as

y(t,t+7) =~ (A() + B()TX (1)

1
=Y(0,7) +~ B(r)T(X(t) - 9). (4.5)
Next, we can write the average expected future short rate conditional on information
at time ¢:
1 r 1

T
7 ) BIRX@)dv=7— | {A’(O)+B’(O)TEt[X(v)]}dv

1

= R(0) + <ﬁ> B'(0)'D(T —t) (X (t) — 6).(4.6)

Using equations (4.6) and (4.5), we can write the zero-coupon yield premium as
W.(t.T) = Y(0,T — t) = R(0) + (T — ) (X(t) - 0),

where

¥(r) = = (B@) - D) B(0)).

The relationship between the factor loadings for the zero-coupon yield premium and
the factor loadings for the forward premium is given by

% <7' X w(T)) = G(7).

Finally, notice that ¥, is stochastic unless ¥» = 0. Not surprisingly, in the Vasicek
model ¥ = 0, while in the CIR model v # 0.

A decomposition of the yield premium. Note that log(P(T,T)) = log(P(t,T)) +

JZ, dlog(P(s,T)) and log(P(T,T)) = 0 imply that
1 T
y(t,T) = —— dlog(P(s,T)).
(t,T) e (P(s,T))

Thus, taking conditional expectations of both sides,

T
Y(t.T) = = /  Blii(e.T)]dv.

As a result, we have
1 T T 1 2
,(t,T) = T3 Ei|lop(v,T) Av) — =|lop(v,T)||?| dv
—t Syt 2
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which we can decompose into a risk premium and a convexity premium:
U.(t,T)=Ly(t, T)+ Ty(t, T),

where
1) = —— [ & [, 1) TAW)] o
y\by T _ ¢ - t P\Y,

and
1 T

1
tT)==—— [ E/|-3 T)|1?| do.
70.1) = 0 [ B |-glore DI do
This decomposition can be computed the following way. Let y%(¢,T) be the zero-
coupon yield where A(t) = 0 but all other parameters are the same as for y(¢, 7).
Then L,(t,T) = y(t,T) —y°(t, T) and J,(t,T) = V(X (t),T —t) — L, (t,T).5

5. CAMPBELL-SHILLER REGRESSIONS

Campbell and Shiller (1991) estimated two sets of regressions involving the yield
spreads. The exposition relies on the existence of unconditional variance and co-
variances.” In particular, let V[Y] denote the unconditional variance of Y and let
C[Y, Z] denote the unconditional covariance of Y and Z.8

The first set of regressions. Let Gy(7—¢, T —t) and f1(7 —t,T —t) be regression
coefficients indexed by 7 —t and T'—t for t < 7 < T'. In the first set of regressions,
the change in a zero coupon yield is regressed on the slope of the yield curve:

y(r,T) —y(t,T) = Po(r —t, T —t) + B1(r —t, T — t)s(t, 7,T) + v(t, 7,T),(5.1)
where
T—1

s(t,m,T) = (T — T) (ve. 1) = y(t.7))

is the (weighted) slope of the yield curve and v is an error such C[s,v| = 0. In this
section we derive the theoretical regression coefficients—assuming pricing equation
(2.4) holds—for the regressions that Campbell and Shiller (1991) estimated.”

We start by decomposing the future yield on a zero-coupon bond into an un-
biased forecast and a forecast error that is uncorrelated with currently-available
information:

y(r,T) = B¢ [y(r,T)] + e(t, 7, T), (5.2)

The next ingredient is the forward rate. Let the forward price of a zero-coupon
bond be

F(t,7,T):=

5The same sort of decomposition can be applied to the forward rate premium.

TA future version will allow for cointegrated spreads.

8Recall that the unconditional variance of the state variables is given by V[X] = 9(t,t + c0).
9See Frachot and Lesne (1994) for related work.
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and let the associated forward rate be

f(t,T,T) = _w

_ <§_t> y(t,T) — (;_t> y(t. 7). (5.3)

-7 -7
Now add and subtract the forward rate from the right-hand side of (5.2):
y(r,T) = f(t,7,T) +w(t,7,T) +€(t,7,T), (5.4)
where
w(t,7,T):= E¢[y(r,T)] — f(t,7,T) (5.5)

is the forward-rate forecast error. Clearly the forward rate forecast error is related
to the forward term premium.!® Now subtract y(¢,T) from both sides of (5.4),
producing;:

y(r.T) = y(t.T) = (F(t.7.7) = y(t.T)) + (w(t,7.T) + €(t, 7. T) ).
Rewrite this equation as follows:
y(r,T)—y(t,T) = s(t,7,T) +n(t,7,T), (5.6)
where and
n(t,7,T):=w(t,7,T)+¢€(t,T,T),

is an error term composed of the forward rate forecast error and the future spot
forecast error.

Decompose the forward rate forecast error into two orthogonal parts by regressing
w on s:

w(t,7,T) =by + by s(t,7,T) +&(t, 7, T), (5.7)
where
~ Cls(t,7,T),w(t,7,T)]
bi(r—t,T—71)= Vis(t, 7. T)]
and

bo(t,7,T) = Elw(t,7,T)] — by E[s(t,7,T)].
Now we can substitute (5.7) into (5.6) to obtain the Campbell-Shiller regression:

y(r, T) — y(t, T) = by + (1 +b1) s(t, 7, T) + <§(t, 7. T) + e(t, 7, T)). (5.8)

Comparing (5.8) and (5.1), we see that By = by, 1 =1+ b1, and v =& + €.

Campbell and Shiller point out that if the (yield-to-maturity version of the)
expectations hypothesis held, then 5y = 1 for all t <7 < T. We see that the expec-
tations hypothesis is an assertion that the forward rate forecast error is uncorrelated
with the slope of the yield curve.!!

10G8ee below for the explicit relationship.
HUnder the YIM-EH, fip(X(t),T —t) = R(X(t)). CIR (1981) pointed out that this condition
cannot be met in the affine-exponential framework.
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In our state-variable framework, we can derive expressions for the regression
coefficients. Let
s(t,7,T) = po(r —t, T —t) + p1(T —t, T —t) " X(t)
and
w(t,7,T) =mo(r —t,T —t) + (1 — t,T — )" X(2),
where p; and 7; are the factor loadings in s and w respectively. Then we can write
Cls,w] ClpX, mX] p1V[X]m

ST T T VN s VX

(5.9)

and
bo = mo — b1 po + (m1 — b1 p1) 0,

where V[X] is given in equation (A.4). Note that since V[s] > 0, p; # 0. Thus the
key element is 7y, the factor loadings in the forward rate forecast error, w.

The factor loadings for s(t, 7, T') are found by substituting the factor representa-
tion of the zero-coupon yields into the definition of s(t,7,T") and collecting terms:

po(r — £, T — 1) = (T;> ((;:i) A(T — 1) —A(T—t)>

pr(r—t, T —t) = (Ti7> ((;:i) B(T—t)—B(T—t)).

The factor loadings for w(t, 7, T) are found by substituting the factor representations
of Ey(y(,T)) and f(¢t,7,T) into the definition of w(¢, 7,T") and collecting terms:

1
mo(r —t, T —t) = <T

-7

+ B(T—7)T(I—d(r —t)) 9)

and

)(A(T—T)+A(T—t)—A(T—t)

and
m(r—t,T—1t) = <ﬁ> (®(r— 1) B~ 7)+ B(r— 1)~ BT ~1).

It can be verified that for the Vasicek model, m; = 0; therefore b; = 0 and §; = 1.
In the CIR model, however, m; # 0 and there is a bias in general.

Note that the relationship between the factor loadings for the forward term pre-
mium and for the forward rate forecast error factor is given by

a((T—T) xm(T—t,T—t))

G(T—t)=— =

=T

The second set of regressions. In the second set of regressions, Campbell and
Shiller use what they call the perfect foresight spread as the dependent variable. Let
A := (T —t)/n and define the spread as

T—1

S(X(t),A, T —t) ;< >s(X(t),A,T—t).

-7
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Then the perfect-foresight spread is defined as

n—1

ST, A) = - 3 (9(Xeia, A) — y(X(5), A)). (5.10)
i=1

The second set of regressions have this form:
S*=v+m95 +¢, (5.11)

where the arguments have been suppressed for notational clarity.
As above, we begin by decomposing S*(¢,7,A) into a conditional expectation
and a forecast error:

S*(t, T,A) = E[S*(t, T,A)] + v(t, T, A). (5.12)
Next we add and subtract the spread, S, on the right-hand side of (5.12):
S*(t,T,A)=S(X(1),A, T —t)+¢(t, T,A) +v(t,T,A), (5.13)

where ¢(¢,T,A) := E[S*(t,T,A)] — S(X(t),A,T —t). Once again, we can turn
(5.13) into a regression by decomposing ¢ into ¢ = dy+d; S+w, where C[S, w| = 0.
Then we can rewrite (5.13) as

S*=do+ (1+dy) S+ (w+v). (5.14)

Comparing (5.14) with (5.11), we see that 41 = 14 d; and y = dp. Noting that
C[S, ¢] = C[S, E4[S*] = S] = C[S, Ey[S™]] — V[S] and E[¢] = E[E[S*]] — E[S] =
—E[S], we can write

n=1+d =
and
Y0 = do = E[¢] — di E[S] = —71 E[S].
We can find an expression for E;[S*(t, T, A)] by first noting that
(A(A) + B(A) B Xi4:4))

(A(a) + B(A) (0 + 03 ) (X (1) - 9))).

Eiy(Xirin, )] =

D= D=

so that

Eily(Xerin, A)] —y(X(1),A) = < B(A) ((A) — 1) (X(¢) - 0).

1
A
Then we can write

n

ES* (4, T, A)] = ni Z_: ~I)(X(t) - 0)

n—1
(Z e_’”A> —(n—1) I] Q' (X(t) — qp.15)

=1

= B(A)Q

where e 2 is a diagonal matrix and I is the identity matrix.
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Equation (5.15) gives the factor loadings for X (¢) in E:[S*], which we denote
X1(A,T —t). The factor loadings for X (¢) in S are given by p; = B(T —t)/(T —
t) — B(A)/A. Using these factor loadings, we can write

OIS B[S VX
" V(S| A VIX| 1

Note that in the Vasicek model, x1 = p1, so that v; = 1. However, the CIR model,
X1 # p1- For example,

x1i(1,2) (/2 — 1) (€7 +1) 7 + (€7 — 1) (ki + \))

p1i(1,2)  eri/? (e7/2=1) ((em/2=1) vi+ (e%/2+1) (ki + N\i))

(5.16)

6. GMM SECTION

We can construct a GMM estimator based on the first set of regressions as fol-
lows.'? We have shown in the previous section that we can write 3y and £; in
(5.1) as functions of the parameters of the model. For models in which none of the
factors is Gaussian'3, we can identify all of the parameters in the model from 3y
and (1. Define h; := (hot, h1t), where hor == Ay — (Bo + B1s¢) and hiy := st ho.
Then the moment conditions are given by E[h;] = 0. Let g := (1/T) Z;szl hi be the
sample average of h. Then we can construct a GMM estimator of the parameters
that minimizes

Q=g"Syg, (6.1)

where S is a consistent estimator of the asymptotic variance of v/Tg.

[This section is incomplete.]

7. EMPIRICAL SECTION

[This section is incomplete.]

8. SUMMARY AND CONCLUSIONS

[This section is incomplete.]

12Gibbons and Ramaswamy (1993) used GMM to estimate a one-factor CTR model using the
unconditional moments

and

B P(X(r), T —71) o P(X(), T —1")
POX(),T—1) * PX@), T —7) |
fort<7<T,t <7 <T',and 7 <t'. We would use the logs of the price ratios instead.
13Need to show this.
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APPENDIX A. CONDITIONAL MOMENTS

When b is diagonalizable, we can write solution (3.4) as

Xt,t+7)=Qe"" Q' X(t)+Q /Te’”dsQ_la.
0

Substituting from (A.1) and (3.7), we have
d

F(s) :A+ZBZ {Qem (Y(t)"‘/()se_’“)dva)]é7

(=1

where A=Q"A(Q™")", Br=Q "B (@), Y(1) =Q " X(t), a= Q7 'qa,

[x]¢ is the (-th component of z. Note that we can write

15

(A1)

(A.2)

S d S
[Qe’” (Y(t) +/O e"’“’dvd)L = Z Qem e™m? (Ym(t) +/0 e_”m”dvc_tm> .
m=1

Using this expression, we can rewrite (A.2) as follows:

d d s
F(s)=A+ ZBK (Z Qom e ° (Ym(t) —i—/ e "V dy c‘zm>)
/=1 m=1 0

d

A+ Z 1 et (Ym(t)+/ e”m“dvam>,
0

m=1

where 877 = ZL(B@)U Qe¢m- Then we can write

d
pij(h) = Ay E(h) + > B (E7(B) Yo (t) + E(h) Gim) ,
m=1

where
R
Eij(h) = elmitra)h / e (miths)s gg
0
h
girjn(h) — e(m-i-nj)h / 6_(Ki+n-7_nm)sds,
0
and

h s
ggl(h) — e(lii+lij)h / 6*(/{1’4”%7’{7”)3 </ e fim? dl}) ds.
0 0

Depending on the eigenvalues, x;, we can write the &;;, &

19
h if ki +kKk;,=0
gfl](h) == {e(“i"'"’"j)h_l ’ !

s otherwise,

cm
ij e(fii-i—ﬁj)h_emm h

—— otherwise,
KitKj—Km

elmitr)h p if ki +Kj — K =0
(h) =

and gg‘ as follows:
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and
h?/2 if ki +Kj=km=0
1+em P () h—1 .
(kj+rKi)h
& e 14 (ritrj) h T A _
(c/‘gb(h) = (ritr;)2 if k; + Kj 75 Km =0
Kmh_1_ .
% lfﬁm#ﬁ'/i“’_ﬁjzo
(176%7”h)('fﬂrﬁj)*(176(’€i+”j)h)nm )
L T —" ¥ prrrey e otherwise.

We now examine the behavior of the variance-covariance matrix as h — oo. We
are interested in which linear combinations have finite variance at as h — oo. In
other words, for what vectors 4§ is

lim 6" p(h)d

h—oo

finite? The linear combinations of X (¢) that have finite variance then are given by
¢=(Q")'a.

We consider two cases of empirical importance. In the first case, all the eigenval-
ues are real and negative; i.e., k; < 0 for i = 1 to d. In this case,

hh—>rrolo g (h) =0 for all (m, 1, j),
hlirr;o gi’}-"‘(h) = T ij) - for all (m, 1, j),
and
lim &j(h) = — ! for all (4, 7).
—00 Ki + Kj
Thus

d  om =
Y _ 1 i ij Gm
pij(00) = lim pyj(h) = Py <—Aia’ + 7) )
m=1
and all linear combinations have finite variance. Let
d d 5 _
_ B
Bi= Y S0 POmln (A.3)
m=1 ¢=1 m

Then we can write the unconditional variance-covariance matrix as follows:

m,w@:g{ﬂ}cﬂ, (A.4)

K]+

where T = {kf;} = {ki + K;} is a d x d matrix and the division in (A.4) is
component-by-component.
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In the second case, k1 = 0 and the rest of eigenvalues are real and negative i.e.,

ki < 0 for ¢ = 2 to d. In this case,

En(h) = Eli(h) = h,

" e(”i"‘”j)h -1 o

&ij(h) = & (h) = Tt for (4,7) # (1,1),

El(h) = h?/2,
elFitr ) h 1 4 (k; + K;) b

(ki + #5)?

Eij(h) = for (4,5) # (1,1).

and otherwise

Sl.(h) — (1 — 6Rmh) (ki + Kj) — (1 — e(m+nj)h) .
() .

(ki + Kj — Bm) (ki + Kj) Km

It looks like we have trouble with any p;;(oco) for i =1 or j = 1. Moreover, we will
have trouble with any other p;;(co) unless a; = 0. In this case, when a; = 0, there
is an equilibrium point. For now, let us assume a; = 0. With this assumption, any
§ for which ¢; = 0 will have a finite value of 6 ' p(cc) 8. Moreover, the same is true
for any ¢ for which (QT¢); = (Q7)1¢ = 0. In other words, and linear combination
orthogonal to the eigenvector associated with the zero eigenvalue will have a finite
unconditional variance.

We can now address the issue of cointegrated zero-coupon rates and forward rates
in the case where we have one zero eigenvalue, the rest negative. Zero-coupon rates
are given by (T — )" (A(T —t) + B(T — )" X (t)). Let

o(v,11,12) = B(11)/m1 — v B(12)/72.
Then linear combinations of rates will be cointegrated when v is chosen so that
(QMd(v,71,72) = 0.

Now we seek the conditions for which rate spreads are cointegrated; i.e. the condi-
tions for which

(Q@M1(B(11)/m — B(m)/m) =0 for all 1,7 > 0. (A.5)

Condition (A.5) implies
(Q")1B(r) =cr forallT>0 (A.6)
for some constant c. Note that if (Q'); = (1,0,...,0), then (A.6) implies B (7) =
¢ T, which is the loading that results from a pure Brownian motion in the short rate
function. Thus if the first factor is an independent Brownian motion that enters

the short-rate function, then zero-coupon spreads (and forward spreads) will be
trend-stationary even though zero-coupon rates (and forward rates) will not be.

[This section is incomplete.]
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